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SUMMARY

Twelve 12-inch-outside-diameter (OD) by 18-inch-
long silicon-carbide particulate reinforced alumina-
ceramic cylinders (SiC/Al»O3/Al) were fabricated,
nondestructively inspected, and assembled by
Lanxide Corporation. They were subsequently
instrumented and pressure tested at Southwest
Research Institute (SRI) under the supervision of
the Naval Command, Control and Ocean Surveil-
lance Center (NCCOSC) RDT&E Division (NRaD)
under the program for the Application of Ceramic
to Large Housings for Underwater Vehicles. Lan-
xide’s material, designated 90-X-089, was chosen
for its high specific compressive strength, specific
elastic modulus, and fracture toughness. Further-
more, this composition is manufactured by a pro-
prietary directed metal oxidation (DIMOX™)
process which makes possible the fabrication of
cylinders to near net shape with little or no dia-
mond grinding. This adds the potential of great
cost and time savings, and the ability of eventually
fabricating very large ceramic components without
the limitations of typical ceramic fabrication equip-
ment. Of the twelve ceramic cylinders fabricated
by Lanxide, ten had a 12-inch OD, 18-inch length,
and 0.412-inch wall thickness. The two remaining
cylinders were left in “as-cast” condition with only
1.5-inches at each end being ground to final
dimension. Each cyiinder was radiographically
inspected and fitted with epoxy-bonded titanium
end rings. After being instrumented with strain
gages, the cylinders were pressure tested cycli-
cally and to destruction.

Lanxide Corporation has demonstrated that it can
successfully and repeatably cast 12-inch-OD by
18-inch-long cylinders from its 90-X-089 SiC/
Al>,Og/Al composition. All twelve cylinders passed
proof testing to at least 10,000 psi. Cylinder fail-
ures were due either to cyclic fatigue or intentional
pressurization to critical collapse pressure. Actual
failure pressure closely matched predictions made
by hand and computer calculations. Cyclic testing
was inconclusive in regard to formulating a correla-
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tion between the number of cycles to failure and
stress levels. However, a maximum design stress
level of 182,038 psi is recommended for a cyclic
fatigue life of 1,000 cycles to design depth.

Lanxide 90-X-089 performs better than WESGO’s
AL-600 96-percent alumina-ceramic composition,
the base of comparison. Lanxide 90-X-089 is
lighter, has improved cyclic fatigue life, and can be
designed to higher stress levels. However, the
resulting improvement in weight-to-displacement
(W/D) ratio, a 10-percent reduction, does not jus-
tify the 10-fold increase in cost over AL-600
96-percent alumina ceramic.

Lanxide has demonstrated that “as-cast” cylinders
can be fabricated with dimensions close enough to
fully machined cylinders without presenting any
significant weight penalty. Pressure testing has
demonstrated that “as-cast” cylinders are structur-
ally sound. However, the 10-percent cost reduction
gained by buying “as-cast” cylinders instead of fully
machined does not justify their use. These savings
may be more important should the size of the cyl-
inders be scaled up to a 20-inch OD or greater.

Lanxide 90-X-089 has been found to be an accept-
able material candidate for fabricating external
pressure housings used in ocean engineering
applications. A maximum compressive membrane
design stress of 182,039 psi is recommended if a
cyclic fatigue life of 1,000 cycles is desired. Cylin-
ders may be nondestructively inspected by radiog-
raphy or pulse-echo ultrasonic inspection. Although
the advantages of Lanxide's 90-X-089 do not jus-
tify the high cost in the 12-inch-OD by 18-inch-long
cylinder size range, it is highly recommended that
the DIMOX™ process be scaled up for fabrication
of greater than 20-inch-OD cylinders and hemi-
spheres. The benefits of the DIMOX™ process will
be of greater advantage in larger components. The
capability of fabricating cylinders to near-net
dimensions will result in cost and time savings
since less grinding will be required. Furthermore,
there is a possibility that internal residual stresses
present in sintered parts may not be present in
parts made by the DIMOX™ process.
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INTRODUCTION

Unmanned underwater vehicies (UUVS) require
pressure-resistant housings for containment of
their electronics and power supply. Currently, such
housings are fabricated from metals such as alumi-
num, titanium, or steel. However, these materials
result in very heavy pressure-resistant housings
when vehicles are designed to operate at depths
as great as 20,000 feet. Ceramic materials,
because of their high specific compressive
strength and high specific elastic modulus, are
ideally suited for application to external pressure-
resistant housings for underwater vehicles. A more
detailed justification for using ceramic materials in
external pressure-resistant housings may be found
in the outline for the program under which this
work was performed by Naval Command, Control
and Ocean Surveillance Center (NCCOSC)
RDT&E Division (NRaD) (reference 1). One of the
objectives of this program was to evaluate various
advanced ceramic compositions for use in pres-
sure-resistant housings. Compositions evaluated
include silicon nitride, zirconia-toughened alumina,
and silicon carbide particulate-reinforced aluminum
(SiC/Al304/AY). The common base of comparison
for testing these materials was 96-percent alumina
ceramic manufactured by WESGO, Inc. This
report summarizes the fabrication, nondestructive
inspection, and testing of twelve 12-inch-OD by
18-inch-long by 0.412-inch-thick SiC/Al>,O4/Al
ceramic cylinders fabricated by Lanxide Corpora-
tion using their proprietary directed metal oxidation
{DIMOX™) process.

BACKGROUND

NRaD has been procuring and testing cylindrical
and hemispherical components made from
ceramic over the last decade. Most of the work,
however, has focused on 94- and 96-percent alu-
mina-ceramic compositions fabricated by Coors
Ceramics and WESGO. When the program for the
application of ceramic to large housings for under-
water vehicles began, the most extensive testing
had been completed on 94-percent alumina-
ceramic housings, only. Testing showed limited
cyclic fatigue life under repeated pressurizations

(references 2 and 3). The eventual failure of
components due to repeated pressurization was
attributed to a radial tensile stress at the ceramic-
to-titanium metal-bearing interface (see figure 25,
reference 1). This stress leads to internal circum-
terential cracks which run through the wall, eventu-
ally breaking off in shards, causing leakage or
catastrophic failure. It is believed that one way of
increasing the cyclic fatigue life of ceramic compo-
nents is to use compositions having higher fracture
toughness than the 94-percent alumina ceramic.
The program for the application of ceramics to
large housings for underwater vehicles gave NRaD
the opportunity to test some new ceramic composi-
tions exhibiting greater fracture toughness. These
include silicon nitride, zirconia-toughened alumina
ceramic, and Lanxide's silicon-carbide (SiC) partic-
ulate reinforced alumina-ceramic composition, des-
ignated 90-X-089.

Lanxide has developed a family of composite
materials based on SiC particulate preforms infil-
trated with a matrix of pure aluminum oxide using
the DIMOX™ process. The mechanical properties
of these composites depend largely on the particu-
lar reinforcing phase, especially its particle size
and packing density. Large particle sizes act to
limit the strength of the composite, while smalier
reinforcing particles result in the strongest compos-
ite materials.

Lanxide 90-X-089, the composite system most
suitable for submersible applications, contains a
reinforcing phase of 500 grit (16 um size) SiC par-
ticles. This relatively high-strength variation of SiC/
Al>,O3/Al composite material was selected for
submersible housings because of its high com-
pressive strength and fracture toughness as well
as its potential for being fabricated in large sizes.

Property requirements for ceramic pressure hous-
ing components for deep submersion inciude high
compressive modulus, high compressive strength,
high fracture toughness, and low density. Many
traditional ceramics exhibit these properties, and
some are being evaluated for this application. The
ceramic matrix composites made by the DIMOX™
process are highly tailorable composite materials
that combine properties of their phases. In addition
to the ceramic constituents, a small amount of
metal alloy permeates the ceramic matrix giving
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the materials a degree of toughness that is
expected to be important under cyclic stress condi-
tions.

SiC particulate-reinforced alumina-matrix compos-
ites made by the DIMOX™ process combine the
high strength and low density of a highly loaded
carbide-reinforcement phase with the high strength
and hardness of an aluminum oxide matrix tough-
ened by residual metal alloy in the form of micron-
sized capillary channels. The process for making
these coniposites lends itself nicely to fabricating
large shapes because it is esseritially a near-net-
shape process. Total dimensional changes during
processing are typically less than one to two per-
cent.

The tamily of SiC/Al,O3/Al composites developed
by Lanxide covers a wide range of properties and
processing characteristics, but one composite sys-
tem that exhibits the requisite strength and modu-
lus, 90-X-089, was selected for submersible
application because it is amenable to processing in
large sizes.

Other composite systems offer higher strengths,
but are not as suited for fabrication into large
shapes for submersible housings. Table 1! sum-
marizes the properties of several SiC/Al>,Oz/Al
composite materials fabricated by the DIMOX™
process.

DIMOX™ FABRICATION PROCESS

The DIMOX™ process produces dense, tough
ceramic composites. For the material selected for
external pressure housings, it is a process in which
SiC particles are locked together in a matrix of
pure alumina containing microchanneils of alumi-
num alloy.

To achieve this special microstructure, preforms of
SiC particles are placed into contact with specially
alloyed aluminum at 900 degrees C. The aluminum
alioy simultaneously oxidizes around the SiC par-
ticles as it wicks into the preform. The SiC particles
are locked into place without the traditional
ceramic pracessing shrinkage associated with

Figures and tables are placed at the end of the text.

sintering. As the alloy continues to wet through the
preform and oxidizes, fresh aluminum metal is fed
to the “growth front” through micron-sized chan-
nels. Oxygen diffuses through the “ungrown”
preform from its “air side” to the growth front
(figure 1).

Barrier coatings on the “air side” of the preform
stop the directed meta! oxidation process at the
preform surface when infiltration is complete, yield-
ing a smooth net-shape finish. Upon completion of
growth, the alloy and composite are separated.
The resultant ceramic composite net shape is
strong (because of the SiC-reinforced matrix of
pure alumina) and tough (because of the metal-
filled microchannels).

OVERVIEW OF PROCESSING STEPS

The production of ceramic composite pressure
vessels by the DIMOX™ process can be divided
into three steps:

1. Preform Production

2. Composite Production (Growth or Matrix
Infiltration)

3. Post Growth Processing

These steps are iliustrated in figure 2. Preform pro-
duction involves sediment casting the cylinder pre-
form in a mold, freezing the cast preform and
mold, and drying the frozen preform. An aqueous
slurry of 500-grit (16 um particle size) SiC, organic
binder, and colloidal alumina is poured into a rub-
ber mold which is vibrated. The vibrational energy
accelerates the settling of the SiC particies into a
densely packed sediment in the shape of the final
part.

The excess liquid from the casting slurry ends up
on top of the cast part, where it is decanted off.
The mold containing the sediment SiC particles
and binders then is frozen to attain sufficient
strength of the preform to allow removal from the
mold without damage or distortion.

The frozen preform is packed in coarse refractory
grain for support and dried with air. The packing
also slows and controls the rate of drying to
prevent cracking of the preform.

Prior to composite formation (growth), the binder-
strengthened and now-dry preform is sprayed with
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two coatings. One coating enhances the initiation
of the DIMOX™ process at the alloy-preform
interface. The second coating stops the DIMOX™
process at the “airside” of the preform.

The preform is sealed onto the floor of a refractory
shell with a refractory piaster. At growth tempera-
tures, molten alloy is added to the annulus
between the shell and the preform. Oxygen is fed
to the center to assure consistent high-Guality
product throughout the composite. After draining
the remaining alloy and cooling the composite, the
residual alloy skin and barrier coatings are
removed by grit blasting.

Applications for marine exposure call for materials
that are resistant to seawater corrosion or materi-
als that can be easily protected from the corrosive
effects of saltwater. Lanxide 90-X-089 contains
about 52 volume percent SiC particulate filler and
30 volume percent aluminum-oxide (AlOz) matrix.
Both of these ceramic materials are quite inert to
the effects of saltwater corrosicn or any common
corrosive materials at temperatures below several
hundred degrees. The remaining 18 volume per-
cent of the material is in the form of aluminum alloy
dispersed throughout the material in micron-sized
capillary channels. Thus, this composite material
can be considered to be 82-percent inert, with a
small phase susceptible to corrosion. The corro-
ston rate of this material should be self limiting with
respect to depth due to the shape and small size
of the ailoy channels.

Protecting the material totally from corrosion will
require proven coating techniques developed for
protecting aluminum alloys. Anodizing and painting
with an epoxy paint (per WS22351 Rev. C-MK 48
Torpedo Protective Coating System) has proved
effective for this material.

In a previous program performed by Lanxide and
sponsored by NRaD?, SiC particulate-reinforced
alumina-ceramic matrix composites were eva-
luated as potential materials for deep-sea
submersible hulls. In this 1990-1991 evaluation,
6-inch-OD scale-mode! cylinders of SiC/Al,O4/Al
composite indicated a potential for use as a deep-

2NRaD was previously Naval Ocean Systems Center
(NOSC).

sea pressure housing material. Results of the
6-inch-OD cylinder program may be found in refer-
ence 4. The 1990-1991 program was only a pre-
liminary evaluation of SiC/AloO4/Al composites.
Further evaluation was required to determine if the
DIMOX™ process produces material of the same
quality when scaled up to medium and large
cylinders. Scale-up from 6-inch ODs to 12-inch
ODs proved to be difficult during the 1990-1991
program.

During 1992, manufacturing techiniques were
developed by Lanxide at contractor expense to
produce 12-inch-OD cylinders. The first 12-inch-
OD cylinder was delivered before award of the
contract for twelve 12-inch-OD by 18-inch-long
cylinders, as proof of the contractor’s ability to fab-
ricate these cylinders. This first cylinder, however,
was not full length; it was 12 inches long instead of
the preferred 18 inches. This cylinder was cycli-
cally tested at 10,000-psi external pressure and
failed on the 826th cycle. A full description of the
testing and of the test resuits is in appendix A. The
conclusions of this test were that the material prop-
erties of Lanxide's 90-X-089 in the 12-inch-OD cyl-
inder are identical to the material properties of the
same composite in 6-inch-OD cylinders. In addi-
tion, the fabrication process for producing large
cylinders from Lanxide 90-X-089 appears to have
satisfied all the criteria associated with the scaling
up of laboratory processes.

A firm fixed-price contract was let to Lanxide in
December, 1992 for the fabrication of twelve
12-inch-OD by 18-inch-long by 0.412-inch-thick
cylinders using Lanxide’s DIMOX™ process. Ten
cylinders were fabricated to the specifications of
drawing 55910-0126845 (figure 3), and two to
those of drawing 55910-0125727 (figure 4). The
differences between these two drawings lie in the
amount of grinding required. Ten cylinders were
ground on all surfaces to the dimensions and toler-
ances shown on the drawing. The two extra cylin-
ders, desig::ated “as-cast,” were ground only at
both ends to facilitate the fitting of titanium end
rings. These cylinders were fabricated to “as-cast”
dimensions to demonstrate the feasibility of doing
this and to determine the effect on the structural
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performance of cylinders when they are not ground
to final dimensions.

OBJECTIVES

There were four objectives for fabricating and test-
ing Lanxide's 12-inch-OD 90-X-089 cylinders:

1. Demonstrate the ability of Lanxide to scale up
the proprietary DIMOX™ process to fabricate
12-inch-OD by 18-inch-long by 0.412-inch-
thick wall ceramic composite cylinders of
equal quality to the 6-inch-OD by 9-inch-iong
by 0.206-inch-thick cylinders previously sup-
plied to NRaD. Determine the uniformity and
repeatability of these composite cylinders in a
quantity scale up to twelve cylinders.

2. Determine the structural performance of the
cylinders under external hydrostatic pressure
loading.

3. Compare the performance of the 90-X-089
cylinders against the baseline composition,
Al-600 96-percent alumina ceramic
manufactured by WESGO, Inc., Beimont, CA.
The structural performance parameters inves-
tigated include cyclic fatigue life and failure
pressure.

4. Determine the ability of the DIMOX™ process
to produce cylinders close enough to net
shape that only the ends of the cylinders
require machining without loss of perfor-
mance.

APPROACH

The test plan for the tweive cylinders included fab-
rication, characterization of material properties,
nondestructive evaluation (NDE), and pressure
testing.

FABRICATION

Preform Mold Fabrication

The pieform mold was fabricated by an outside
venaor. It had two aluminum base plates, two fiber-
glass/epoxy outside shells, two rubber inner ele-
ments, and a tapered fiberglass/epoxy center-core

element. A schematic of the mold is shown in fig-
ure 5. Photos are shown in figure 6.

The rubber elements of the mold were cast against
an aluminum cylinder model, machined to specifi-
cation. During the program, it became necessary
to cast a cylinder with a thicker wall to provide suf-
ficient material for overcoming a slight out-of-round
condition of the preforms cast in the original mold
configuration. This condition originated from the
poor dimensional stability of the tapered, two-
piece, fiberglass/epoxy center-core element.

The mold was easily modified by recasting the
center rubber element with the original model
inside the mold. The cylinder mode! was modified
by laminating a 0.050-inch-thick layer of sheet wax
on its inside wall. A new inner rubber element was
cast in the mold assembled with the modified
model. This yielded a modified mold that cast a
preform with a 0.050-inch-thicker wall on the inner
diameter.

Cylinder Preform Casting

An SiC slurry was prepared from SiC powder
mixed with binders a.1d dispersion aids in a propri-
etary composition. This slurry was cast into the
mold and allowed to settle under vibratory condi-
tions. After a predetermined time, the mold
assembly was placed into a freezer to avoid
thawing, which could result in distortion or fracture.
Figure 7 shows two demolded, frozen preforms
inside a freezer.

Preform Drying

Special procedures were develaoped to dry the fro-
zen preforms carefully, avoiding stresses that
distort or fracture the preforms during the critical
period between the frozen state and the dry state.
Controlied moisture removal from all surfaces at a
uniform rate is critical. Maintaining constant
preform support to avoid stress concentrations
was also important. A proprietary drying system
was developed to perform this function.

Not one preform warped or cracked during drying
in the entire program when using the system
developed. This is notable because prior cylinder
programs incurred heavy losses during drying.
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Figure 8 shows a dried cylinder preform inside the
dryer.

Preform Control

The dimensional control of dried cylinder preforms
is a function of the quality of the mold and the dry-
ing process. It was not practical to dimension fro-
zen preforms, which would be necessary to
determine the dimensional effects of the drying
process. The dimensional data on preforms
includes mold and freezing effects as well as the
effects of drying.

All cylinder preforms prepared for this project were
out of round. The orientation of the elliptical cylin-
ders matched the orientation of the cylinders when
they were cast in the mold. Thus, the out of round-
ness is a moid problem and does not occur during
drying or growth. When a new rubber mold ele-
ment was made to increase the wall thickness by
0.050 inch on the inside surface, the orientation of
the two-piece fiberglass center core of the moid
was rotated about 90 degrees to the orientation it
had in the original mold. The cylinders cast in the
modified mold were out of round in the same
orientation as the center core (i.e., the orientation
of the elliptical axis had rotated 90 degrees in the
same direction as the core).

Three cylinder preforms cast in the original mold
configuration (thin walled) were dimensioned accu-
rately prior to their growth. Thirteen diameters
were measured every 15 degrees from the mold
index mark for each of six sections along the cylin-
der length. Even though all these parts were out of
round, they were compared to determine the cylin-
der-to-cylinder repeatability of diameters obtained
from the same mold, along the same elliptical axis
orientations. There were six maximum and six
minimum diameters for the ID and the OD. The
results are shown in table 2.

The diameter range along the maximum elliptical
axis of the inside surface was 0.047 inch. The
minimum axis range was 0.023 inch. Similar
results were seen for the OD: maximum axis range
was 0.010 and minimum axis range was 0.050
inch.

Even with the unstable mold, tolerances of +0.025
inch were obtained. This is a tolerance of 0.2 per-
cent over the cylinder diameter. With a more rigid
mold design, it would not be unreasonable to
expect tolerances of 0.1 percent.

Two cylinders cast from the modified mold (thicker
wall) were also dimensioned, with resuits even
tighter than the three cylinders discussed above.
The total inside diameter (ID) range along the max-
imum axis was 0.012 inch and along the minimum
axis, it was 0.016 inch. Note that these parts were
still cast in the same mold (just one rubber mold
element was replaced) and the parts were out of
round equally to the cylinders cast in the original
mold configuration.

Preform Preparation for infiitration

Special refractory shelis were cast and fired in
preparation for the DIMOX™ processing of the pre-
forms. These assemblies had three components.
The design of these preforms is a key element of
the DIMOX™ growth process for these cylinders.

Prior to the infiltration using the DIMOX™ process,
two preparation steps must be made to the cylin-
der preforms. First, a proprietary coating is applied
to the inside of the cylinder by spraying. This coat-
ing is a barrier to the infiltration process, prevent-
ing the oxide from building up beyond the surface
of the preform when infiltration has been com-
pleted. While the bulk of the infiltration is controlled
by time, some regions in the preform will complete
infiltration before other regions. Without the barrier,
regions of aluminum oxide scale will build up as
the oxidation proceeds beyond the preform sur-
face. This scale bonds with the composite wall and
is difficult to remove without damaging the surface
of the composite. Another proprietary coating is
applied to the outside surface of the cylinder pre-
form. This coating makes the initiation of the oxida-
tion process uniform over the surface of the
cylinder in contact with the molten alloy. Figure 9
shows two preforms with barrier and initiation coat-
ings, ready for matrix infiltration. Figure 10 shows
a growth shell with a preform inside it.

Preform Growth

Oxide matrix infiltration in the DIMOX™ process
takes place at an elevated temperature of 1,650
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degrees F (900 degrees C). Two refractory shell
assemblies containing two preforms at a time are
placed inside an electric furnace for the process
(figure 11).

Each furnace is instrumented with eleven thermo-
couples, monitored by an L&N Micromax system to
track the process temperatures of both preforms
and throughout the furnace itself. This data was
collected by computer, stored on magnetic disk,
and used to produce graphs of the thermocouple
traces. The technigue was capable ot detecting the
initial melting of the growth alloy, the drop of the
alloy into the shell, and even the initiation of the
DIMOX™ process exotherm that occurs when alu-
minum alloy oxidizes.

Alloy Draining

A considerable quantity of aluminum alloy is
required for the infiltration of a preform as large as
these cylinders. Once the growth process has
been completed, the infiltration part has to be
removed from the molten alloy during cooling of
the part. In this case, several hundred pounds of
molten aluminum alloy is involved. A procedure
has been developed to drain this alloy safely while
the infiltrated part remains undisturbed while cool-
ing in its refractory shell inside the furnace. Figures
12 and 13 show technicians draining the alloy from
a shell inside the furace. The alloy is drained into
a graphite mold where it solidifies into ingots of a
size convenient for reuse.

This procedure was reviewed to determine its
safety. Based on the findings of the review, minor
modifications were made and the procedure
adopted for all composite cylinders made in this
program. The procedure proved to be efficient and
safe, simplifying reuse of the spent alloy for subse-
quent cylinder growth runs. A chemical analysis
was performed on each batch of alloy drained from
each shell, and adjustments were made for the
next infiltration run by adding alloying elements to
bring the chemistry back into specification. Since a
significant quantity of the aluminum in the alloy is
consumed by its oxidation during infiltration, most
of the adjustment to the used alloy is to bring the
aluminum content back to the original specification.

Grown Cylinder Control

Diameters of cylinders completing the growth cycle
were dimensioned as described above to deter-
mine the dimensional control maintained through
the process. Eleven grown cylinders were mea-
sured, with one measured only for ID control.
Table 3 summarizes the data obtained for all cylin-
ders.

It can be seen that even with the dimensionally
unstable mold design and the resulting out-of-
round cylinders, the basic shape of each cylinder
was reproduced with a tolerance averaging =0.018
inch for all inside and outside diameters. The stan-
dard deviations for these cylinder dimensions
ranged from 0.008 to 0.014 inch. From this data, it
appears that, given a dimensionally stable mold
capable of casting very round preforms, the
DIMOX™ infiltration process could make fweive-
inch-diameter composite cylinders that have diam-
eters reproducible within 0.010 to 0.015 inch.

These cylinders would not require machining
except for trimming and squaring of the ends and
removing high spots on the inside and outside sur-
taces to provide adequate clearance for the end
fittings.

To define the dimensional changes incurred by the
DIMOX™ growth process, it is necessary to evalu-
ate the dimensions of the cylinders both before
and after growth. Since the diameters of cylinders
BL, BM, and BO (tables 2 and 3) were measured
in approximately the same positions before and
after their infiltration, the changes in each mea-
surement can be calculated before and after the
growth cycle. The results indicate that the dimen-
sional changes that occurred during growth aver-
aged —0.013 inch for the ID and —0.002 inch for the
OD. The statistics are summarized in table 4, and
the actual numbers for each cylinder are shown in
tables 5, 6, and 7. The ID of these three cylinders
shrank by 0.11 percent. The OD of two cylinders
shrank by 0.02 percent.

Machining

NRaD supplied two drawings for the program.
Drawing 55910-0126845 (figure 3) is for the ten
housings totally machined on all surfaces (“fully
machined”). Drawing 55910-0125727 (figure 4) is
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for the two housings machined only on each end,
leaving the center region of both the inside and
outside surfaces in the “as-cast” or net-shape
condition.

The grown cylinders had to be shot-blasted before
machining. Figures 14 and 15 show a cylinder
before and after shot-blasting, respectively.

All machining of the “fully machined" cylinders was
done at Unas Grinding Corp, 28 Cherry St., P.O.
Box 280535, East Hartford, CT. Machining of the
“as-cast” cylinders also was performed at Unas
Grinding except for one which was machined at
Alanx Products, 101 Lake Drive, Newark, DE.
Figure 16 shows a “fully-machined” cylinder.

Figure 17 shows an “as-cast” cylinder.

Epoxy Coating

A 12-inch-diameter cylinder of Lanxide 90-X-089
reinforced ceramic was sent to Technicote, Inc.,
396 Roosevelt Ave., Central Falls, Rl 02863, for
coating per WS22351, Rev C (MK 48 Torpedo Pro-
tective Coating System). This is an epoxy coating
normally applied to aluminum torpedo tubes. The
process involves applying a surface pre-treatment
(chromate), followed by epoxy resin, and then heat
curing. Technicote requested a practice run to
establish proper heat cure cycles for the ceramic
composite material.

A sample was sent to Technicote, coated, and
returned. The cure was inadequate; areas of the
epoxy could be easily flaked off the surface. Two
more sampies were sent to Technicote for more
trials. These samples had greater integrity than the
first coated sample; the bond with the substrate
was very good. Technicote performed tests on the
surface of one of the samples showing acceptable
performance of the coating.

One of the coated samples was sent to Artech
Corp., Newark, DE for salt fog/spray test (per
ASTM B-117). The exposure time was 48 hours

in a cabinet maintained at 95 degrees F, with a
5-percent sodium-chloride solution supplying a
condensing fog. The results are reported in a letter
from Artech (appendix B). The epoxy surface
showed no sign of oxidation, corrosion, or any

other effect from the test. The unpainted back of
the coupon had a small amount of white deposit
which was easily rubbed off. Note that the entire
coupon was anodized prior to coating, so the
unpainted back demonstrated a level of protection
from salt corrosion.

It was concluded that the epoxy coating applied by
Technicote was adequately cured and would be
acceptable for the two deliverable cylinders, Cylin-
der 3375-BO was shipped for coating and deliv-
ered as Cylinder LAN 007. This cylinder is shown
in figure 18 and again in figure 38.

CHARACTERIZATION OF MATERIAL
PROPERTIES

Preform Density

Each cylinder is cast about 30 inches iong. After
drying, each preform has a one-inch section
removed from each end. The density of each cylin-
der preform end is determined (ASTM C914-79,
Standard Test Method for Bulk Density of Solid
Refractories by Wax Immersion) and recorded on
data sheets. This data was used to judge the qual-
ity of each preform that was cast.

Each grown cylinder was cut to about an 18.5-inch
length for machining. A two-inch-long section was
removed directly adjacent to each end. Both of
these rings were used for testing to characterize
the properties of the material in that cylinder. The
data was correlated with respect to the end of the
cylinder, identified as “top” or “bottom.” Figure 19
shows a schematic of the preform and the location
of the co-processed rings that were removed from
the preform.

The properties measured included density, com-
pressive strength, flexural strength, and fracture
toughness. The modulus of elasticity was deter-
mined from the flexural test as well as from strain-
gage instrumented compression test samples. it
has been the experience at Lanxide that the latter
method of modulus determination is more accurate
for these high-modulus materials.

Cylinder Density

Each cylinder was measured to determine its
density after the ends were ' oved for the
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co-processed testing. Density was determined
using the ASTM B311-86 method.

Compression testing was performed in accordance
with ASTM Standard Designation C773-88, Stan-
dard Test Method for Compression (Crushing)
Strength of Fired Whiteware Materials. Specimens
measured 6.25-mm diameter by 12.7-mm high
(0.250 inch by 0.500 inch) right cylindrical speci-
mens. Tungsten carbide platens were used for
each of the test specimens.

Flexural strength testing was performed in accor-
dance with MIL-STD-1942A, Flexural Strength of
High Performance Ceramics at Ambient Tempera-
ture. Specimen size was 6 mm by 3 mm by 45 mm
(2:1 cross-section width-to-thickness). Lower span
was 40 mm, upper span was 20 mm (Lanxide
drawing No. A-P-0024). Hardened steel fixturing
was used. A drawing of the specimen is shown in
appendix C.

Fracture toughness was determined in accordance
with reference 5. Specimens measured 4.8 mm by
6 mm by 45 mm (Lanxide drawing No. A-P-0027).
A drawing of the specimen is shown in appendix C.
The same fixture was used for both flexural
strength and fracture toughness determination.

Raw materials data are presented in appendix D,
tables D-1 through D-24. Average properties for
each cylinder are in table 8, sheets 1 and 2.

Quantitative Image Analysis

Samples from each test ring were mounted and
polished for microstructural evaluation. The evalu-
ation was made using a Cambridge Quantimet 520
Image Analysis System and an optical microscope.
Multiple fields (minimum of 200, 0.01784 mm,

2 per field) of each sample were analyzed at 500 x
magnification for: SiC filler, metal phases, porosity,
and alumina matrix. The fields were averaged and
the results for each cylinder are summarized in
appendix D and table 8, sheet 1.

NONDESTRUCTIVE EVALUATION (NDE)

Dye-Penetrant Inspection

All cylinders were evaluated to determine the pres-
ence of surface cracks using a dye pe  ‘-ant test.

Testing was performed by both Lanx " MQS
Inspections, Inc., 310 Cornall Drive, V. ‘gton,
DE.

None of the cylinders showed any flaws during
dye-penetrant testing. This means that none of the
cylinders had any surface cracks or flaws penetrat-
ing into the material.

Dimensional Inspection

Machined cylinders were measured for confor-
mance to NRaD Drawing 55910-0126845 and
Drawing 22910-0125727, depending on which
cylinder was inspected. These inspections were
taken and reported by the facility machining the
cylinder.

Witness Cylinder

A witness specimen was prepared for calibration of
the NDE inspection equipment. This specimen was
a Lanxide 90-X-089 cylinder with a 12-inch-OD,
0.412-inch wall thickness, and incorporated inter-
nal defects typical of the composites produced by
the DIMOX™ process. These defects were in the
form of spherical inclusions approximating the fol-
lowing fraction-of-an-inch diameters: 0.032, 0.063,
0.125, 0.187, and 0.250.

Three types of defects typically occur in these
composite materials. One type is an open void,
another is a metal inclusion, and a third is an inclu-
sion of pure oxide matrix containing no SiC particu-
late.

Dupilicating these flaws is not simple due to the
nature of the DIMOX™ process. Unlike traditional
ceramics where open flaws can be produced by
incorporating organic material that will burn out
upon firing, the DIMOX™ process, by its nature,
infiltrates the interstices of the preform (and any
voids) with aluminum oxide matrix, thus filling voids
with dense oxide.

To simulate an oxide inclusion, the cylinder was
cast with spheres of an organic material to burn
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out during the DIMOX™ process leaving a void to
fill with oxide matrix. For this, graphite spheres
were selected in the appropriate size range.

Simulating an open pore, or void, was more diffi-
cult. Graphite spheres of appropriate diameters
were coated with SiC using chemical vapor
infiltration (CVI) and cast inside the preform wall.
This coating either protects the graphite from
oxidation during the DIMOX™ process, or remains
if the graphite oxidizes. Either way, a spherical
inclusion of iow material density would remain pro-
tected from infiltration of the oxide matrix, effec-
tively simulating a void in the material.

Copper spheres of appropriate diameters were
cast inside the preform to simulate the metal-filled
inclusion. During infiltration, molten aluminum
reaches the copper inclusions before the copper
melts. The molten aluminum dissolves the copper,
and fills the void with molten metal rather than
oxide, resulting in metal-filled inclusions of the
desired diameters.

These techniques of creating inclusions were
found to be successful. A cylinder preform was
cast with two regions of spheres; one at each end
and 180 degrees across from each other. Five
spheres of each material (Cu, graphite, SiC/graph-
ite) were cast into the wall in alignment. This
created three rows of spheres, each row repre-
senting one type of flaw.

After matrix infiltration, half of the cylinder was
machined smooth on the inside and outside sur-
taces. This gave both machined and unmachined
regions of simulated flaws. The unmachined region
was required to determine if the flaws could be
detected in the cylinders retaining their rougher
“as-cast” surface.

Radiographic inspection of Witness Cylinder

All features placed into the preforms were well
delineated in the radiographs of the infiltrated com-
posite cylinder. Even the smallest spherical feature
(1/32 inch) showed up quite well. Resolution was
such that the very thin SiC coating on the graphite
spheres simulating low-density flaws was visible.
The roughness of the surfaces in the “as-cast”,

unmachined region was visible, but there was no
difficulty seeing any of the features.

The witness cylinder showed that similar flaws in
any of the production cylinders would be quite vis-
ible and easily detectable.

Ultrasonic Inspection Of Witness Cylinder

The witness cylinder was also inspected by the
full-immersion pulse-echo technique at Sonic Test-
ing and Engineering, Inc. (Southgate, CA). Sonic
Testing and Engineering used a 3/8-inch diameter,
3-inch focal length,10-MHz transducer to perform
the inspection. The pulse-echo C-scan turned out
to be so “noisy” that it was deemed unusable for
the detection of flaws. It appeared that there were
more flaws in the ceramic than intentionally
planted. This may well have been the case as a full
inspection of one of the deliverable cylinders
resulted in a “clean” and uniform C-scan. More
information on the NDE of ceramic components
may be found in reference 6.

NDE of Deliverable Cylinders

The initial NDE plan included radiography of each
cylinder blank prior to machining as well as radiog-
raphy of the machined cylinders. After six cylinder
blanks were radiographed without detected flaws,
radiography before machining was dropped to
streamline the delivery of parts for machining.

The NDE requirement was to locate and map all
flaws that measured 0.030 inch, or greater, and
locate and map all regions that varied in material
density by more than 5 percent. Radiography was
selected for this composite because prior experi-
ence with ultrasonic NDE had not been as promis-
ing for these composites as was hoped.

All radiographs were taken with a Mil Standard,
0.50-inch aluminum penetrameter in each shot to
qualify the radiograph. In all radiographs, the “2T"
hole was easily resolved (0.02-inch diameter,
0.01-inch thick).

Each radiograph also included a small step wedge
machined from the Lanxide 90-X-089 ceramic
composite. The wedge was machined with seven
steps ranging from 0.3506 inch to 0.4744 inch. It
was 0.5 inch wide and 1.75 inches long. This is a
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thickness standard varying from a nominal 0.4125
inch +5 percent, +10 percent, and £15 percent
increments. The step wedge image in each radio-
graph was used to calibrate the individual radio-
graph’s gray levels with actual material densities.
The step wedge is necessary to correlate film
density with material density for accurate results
when the radiograph is digitized.

Radiography was performed by MQS Inspections,
Inc. The source-to-film distance was 48 inches,
and the spot size of the beam was 1.5 mm. These
parameters yield a geometric unsharpness factor
of 0.0005 inch. Sixteen films were used to shoot
the entire circumference of each of the eight seg-
ments, with two films overlapping to cover both
ends of the cylinder.

Initially, plans included digitizing the radiographs,
but the radiographs of the witness specimen
showed that the smallest features (0.030 inch)
were easily detected. While digitization enhanced
the images on the radiographs, it was not needed
1o locate or size the defects. The requirement for
digitization of all radiographs was dropped, but it
would still remain an option to evaluate suspicious
regions on the radiographs.

All cylinders were radiographed prior to bonding
the end rings. The films were read at Lanxide
using an optical magnifier and a light box. None of
the cylinders showed definitive flaws. Due to the
size of the film and the length of the cylinders, all

films overlapped in the center third of the cylinders.

Features on one film could be checked against the
mating surface of the overlapping film to confirm
the presence of a flaw. Two low-material density
flaws measuring about 0.030 inch were detected
outside the overlap region on cylinder LAN 004
and reported. However, both flaws appeared iden-
tical to film-related flaws seen in other cylinder
radiographs and probably were film artifacts.

PRESSURE TESTING

Test Setup

Three types of test assemblies were tested. They
differed in the type of end closure used (hemi-
spherical or flat) and the type of titanium end cap
used.
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Hemispherical end closures were planned for use
in cyclic tests while flat end plates were planned
for use in implosion tests, these being more
rugged and, therefore, more capable of withstand-
ing the force of the implosion at high pressure
making them reusable. At program initiation, it was
not planned that the cylinders would be cycled
above 12,000 psi. The machined hemispherical
ends were calculated not to provide enough buck-
ling resistance above 12,000 psi, especially with
low-modulus materials such as SiC/Al,O3/Al. For
this reason, all cyclic tests run above 12,000 psi
were run using flat end plates.

The differences in the two titanium end cap
designs are in the external seal. The NRaD Mod 1,
Type 2 end caps have a lip on the OD. During
cylinder assembly, a silicon sealant is applied to
this lip. The NRaD Mod 1, Type 1 end caps do not
have such a lip. Type 1 end caps were originally
intended for use in proof and implosion tests; Type
2 end caps were originally intended for cyclic tests
because they were believed to ensure a better seal
under repeated pressurization.

The three types of assemblies can be summarized
as follows:

Assembly | End Cap End Closure
Type | Type 2 Hemispherical
Type |l Type 2 Flat Plate
Type Il Type 1 Flat Plate

Test assembly Type | is shown in figure 20. NRaD
Mod 1, Type 2 end caps (figure 21) are epoxy
bonded to the ends of the ceramic cylinder using
the procedure described in note 4 of figure 20. A
0.010-inch-thick manila paper gasket (figure 22)
ensures a minimum 0.010-inch thickness of epoxy
on the bearing interface between the ceramic and
the titanium.

Cylinders LAN 001 through LAN 006 were bonded
onto the smooth, machined ceramic surface finish.
However, test personnel noticed extrusion of the
epoxy on the inner diameter of the cylinder on
some of the cylinders after pressure testing. So, it
was decided that a better bond between the tita-
nium and the ceramic could be achieved if the
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ceramic surface to which the end caps would be
bonded were grit blasted prior to bonding. The
bond surfaces on cylinders LAN 007 through
LAN 012 were prepared by the following grit-
blasting procedure.

Cylinder ends were cleaned with a suitable solvent.

Then, the bearing surfaces of the cylinders were
masked using industrial grade duct tape to ensure
that the smooth bearing surfaces of the cylinders
would not be subjected to grit blasting. The cylin-
der was placed into a Pro-Finish Model PF-3648
grit blaster manufactured by Empire Abrasive
Equipment Co., 2101 W. Cabot Bivd.,

Langhorn, PA. Norton MCA-1360 abrasive grit
(100 grit) was used in the blaster. Air pressure was
set to 60 psi and the cylinder ends were grit
blasted from a distance of approximately 6 to

8 inches in a smooth sweeping motion. Spraying
was continued until the shiny machined ceramic
developed a light frosted appearance.

In test assembly Type |, the cylindrical assembly is
closed at both ends by titanium hemispheres
(figure 23). The assembly is made watertight by a
surface seal using a nitrile O-ring for which there is
an O-ring gland machined into the titanium end
cap. The titanium hemisphere is joined to the tita-
nium cylinder end cap via a V-shaped steel clainp
(figure 25).

Each cylinder was instrumented with five CEA-06-
250-UT-120 strain-gage rosettes. These were
located at the center of the cylinder length and
spaced 72 degrees apart. Each of the 1/4-inch,
90-degree rosettes had one leg oriented in the
hoop direction and the other in the axial direction.
Electrical leads for the strain gages were passed
through the pole of the upper hemisphere via a
plug (figure 26) held in pace by a washer and nut
{figure 27) on the inside of the hemisphere. The
bottom hemisphere had a drain piug which could
be opened to determine whether there had been
any leakage during testing. A cylindrical wooden
plug was placed inside the assembly to mitigate
the shock of implosion should failure occur.

Figure 29 shows test assembly Type ll. This test
assembly is identical to test assembly Type |,

"

except that the cylinder ends are closed by flat
steel bulkheads (figure 30) instead of titanium
hemispheres.

Figure 31 shows test assembly Type Il which uses
NRaD Mod 1, Type 1 titanium end caps (figure 32)
instead of the Type 2 end caps used in test
assembly Type Il. Test assembly Types |l and Hi
are held together by four 1/2-inch steel tie rods
(figure 33). Strain-gage leads are passed through
the feed-throughs shown in figure 34. The force of
implosion is mitigated by a cylindrical wooden plug
(figure 35). Figure 36 is a photograph of a fully
machined cylinder with NRabD Mod 1, Type 2 end
caps epoxy bonded to it. Figure 37 shows a com-
plete Type Il assembly being lowered into a pres-
sure chamber at Southwest Research Institute
(SRI), San Antonio, TX, prior to pressurization. All
testing was performed at SRI. Figure 38 shows an
“as-cast” cylinder, LAN 007, with its green epoxy
coating and Mod 1, Type 2 titanium end caps
bonded to it.

Pressure Testing

Pressure testing was performed in accordance
with the test plan/result summary shown in table 9.
Strains were read at 1,000-psi intervals on the first
pressurization for each cylinder. When cylinders
were to be purposely taken to failure pressure,
strains also were read during the second cycle.
Acoustic emissions were monitored on cylinders
LAN 008 and LAN 009. In test cases where the
cylinder withstood all planned pressure testing, at
least one end cap was removed using the end cap
removal fixture shown in figure 39. The method of
end cap removal involves heating up the cylinder
end to be removed, which breaks down the epoxy,
and then pulling the end cap off the cylinder. Ade-
guate force can be applied to remove the end cap
by using the mechanical advantage of turning the
nuts on the four 1/2-inch-diameter tie rods. After
the end cap was removed, the cylinder was
cleaned and taken to Sonic Testing and Engineer-
ing, Inc., for pulse-echo ultrasonic inspection to
determine the presence and extent of internal cir-
cumferential cracking. What follows is a brief sum-
mary of the pressure testing.
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Cylinder LAN 001 was proof tested to 12,000 psi
and inspected. There was no damage, and no
leaks were detected. Strains were read at 1,000-
psi intervals and plotted (figure 40). The proof test
was followed by 2,000 cycles to 12,000 psi, which
the cylinder withstood without any visible damage.
After completion of testing, one cylinder end cap
was removed, dye-penetrant was applied, but no
cracking was visible on the bearing surface. Pulse-
echo ultrasonic inspection did show internal
circumferential cracking along the entire circumfer-
ence of the cylinder. Figure 41 shows the C-scan
of one end of the cylinder. The pulse-echo ultra-
sonic inspection was performed by Sonic Testing
and Engineering using a 3/8-inch diameter, 3-inch
focal length, 10-MHz transducer. Circumferential
scans were taken at 0.050-inch interval spacing.
Inspection showed that cracks did not extend more
than 0.75 inch from the bearing surface.

Cylinder LAN 002 was proof tested and cycled to
12,500-psi pressure. The cylinder failed during
pressurization number 1,968. Figure 42 shows the
plotted strain gage data. Figure 43 shows the cylin-
der end cap remains.

Cylinder LAN 003 was proof tested and cycled at
16,000 psi. It completed 464 cycles before the test
was terminated due to pressure test equipment
problems. Strain data is shown in figure 44. Both
end caps were removed from the ends of this cyl-
inder. Pulse-echo ultrasonic inspection showed
that one end was entirely free of cracks, while the
other end had cracks (figure 45) which did not
extend more than 0.50 inch.

Cylinder LAN 004 was proof tested and cycled to
13,000-psi external pressure. Strain data is shown
in figure 46. The cylinder failed on cycie num-

ber 801.

Cylinder LAN 005 was proof tested and cycled to
12,500-psi external pressure. Figure 47 shows the
strain data taken during proof cycling. The cylinder
withstood 2,902 cycles before testing was termi-
nated. Minor extrusion of epoxy was noted on the
1D of one end of the cylinder. It was removed and
ultrasonically inspected for internal circumferential
cracks. Figure 48 shows the results of that inspec-
tion.
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Cylinder LAN 006 was proof tested and pressure
cycled at 14,000-psi external pressure. The cylin-
der failed on cycie number 331. Strain gage data
are plotted on figure 49.

Cylinder LAN 007 was the first of two “as-cast”
cylinders to be tested. It was the first cylinder on
which the ends were grit biasted before titanium
end caps were epoxy bonded to it. This cylinder
was proof tested and cycled to 12,500 psi. The
cylinder failed on cycle number 531. Strain data
are plotted in figure 50. The slope of the strain vs.
pressure plots are less steep than for the fully-
machined cylinders because of the slightly thicker
walls of these cylinders.

Cylinder LAN 008 was proof tested to 10,000 psi,
pressurized to 15,000 psi, and finally pressurized
to failure, which occurred at 19,000 psi. Strain data
for the first and second cycles are plotted in fig-
ures 51 and 52, respectively. Acoustic emissions
for all three cycles are plotted in figure 53.

Cylinder LAN 009 was proof tested and cycled to
15,000-psi external pressure. Strain data from the
first and second cycles are plotted in figures 54
and 55, respectively. Acoustic emissions for pres-
surization numbers 1, 2, and 161 are plotted in
figure 56. The cylinder withstood 3,003 cycles to
15,000 psi. Examination of the cylinder after test-
ing revealed a chip on the OD. The chip was
approximately 0.5 inch in diameter and less than
0.10inch deep. One end of the cylinder was uitra-
sonically inspected after removal of the titanium
end cap. Figure 57 shows the results of this
inspection. Internal circumferential cracks did not
extend more than 0.60 inch.

Cylinder LAN 010 was proof tested and cycled to
13,000 psi. It withstood 3,001 cycles without any
visible damage. Strain data are piotted in figure 58.
A pulse-echo C-scan of one end is shown in

figure 59. Cracking was found to be minimal, not
extending more than 0.20 inch.

Cylinder LAN 011 was proof tested to 10,000 psi
and pressurized to failure, which occurred at
19,000 psi. Strain data are plotted in figures 60
and 61, respectively. Note that hoop strains start
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diverging at 18,000-psi external hydrostatic pres-
sure.

Cylinder LAN 012 was the second and final deliv-
erable “as-cast” cylinder. This cylinder was proof
tested and cycled to 12,500 psi. The cylinder with-
stood 2,004 cycles without any apparent damage.
Strain data are plotted in figure 62. The ends of
this cylinder were not inspected for internal circum-
ferential cracking. The green epoxy coating had a
blistered appearance after testing.

TEST OBSERVATIONS/DISCUSSION

MATERIAL PROPERTIES

Table 8 contains a summary of the average mate-
rial properties measured on specimens taken from
the twelve 90-X-089 cylinders. Tables D-1

through D-24 in appendix D show the same data
along with the actual raw data for each batch of
test specimens taken from the cylinders.

The mean compressive strength of the twelve cyl-
inders was measured to be 301.2 ksi with a stan-
dard deviation of 12.7 ksi. The minimum average
compressive strength was measured in cylinder
LAN 002 at 269.0 ksi, while the maximum average
compressive strength of 321.4 ksi was measured
in cylinder LAN 004.

The mean compressive modulus measured was
41.6 Msi, with a standard deviation of 1.6 Msi. A
high average modulus of 44.7 was measured in
cylinder LAN 003; the low of 38.9 Msi was mea-
sured in cylinder LAN 002.

The mean fracture toughness was 7.59 ksi*in/2
with a standard deviation of 0.93 ksi*in'/2. The
maximum fracture toughness of 8.87 ksi*in'/2 was
measured in cylinder LAN 005 and the minimum of
5.13 ksi*in'/2 was measured in cylinder LAN 008.

The specific gravity of the material stayed fairly
constant from cylinder to cylinder. The mean spe-
cific gravity was 3.365 gm/cc with a standard devi-
ation of 0.013 gm/cc.

The mean flexural strength of all twelve cylinders
was measured to be 56.2 ksi, with a standard devi-

ation of 2.8 ksi. A minimum flexural strength of
48.7 ksi was measured in cylinder LAN 008 and a
maximum average flexural strength of 62.4 ksi was
measured in cylinder LAN 002.

STRAINS

The strain vs. pressure plots for the twelve cylin-
ders show that strains increased linearly with
increasing pressure. With the exception of the two
“as-cast” cylinders, strains remained fairly uniform
from cylinder to cylinder. The average hoop strain
at 10,000-psi external hydrostatic pressure for the
ten fully-machined cylinders was 3,159.2 micro-
inch/inch with a standard deviation of only

35.5 microinch/inch. The average axial strain at
10,000-psi external hydrostatic pressure was
936.2 microinch/inch with a standard deviation of
13.8 microinch/inch.

Strains were recorded on the first two pressuriza-
tions of cylinders LAN 008, LAN 009, and

LAN 011. Data shows that the compressive strains
decreased with repeated pressurization.

Strains in cylinder LAN 008 at 10,000-psi external
pressure on the first and second pressurizations:

Calculated
Hoop Axial Compres-
Strain Strain sive Poisson’s
(micro- (micro- Modulus Ratio
inch/inch) | inch/inch) (psi) (psi)
1st Cycle 3.170.8 939.6 41,880,000 0.239
2nd Cycle 3,033.6 922.2 | 43.970,000 0.231
Difference 137.2 17.2 2,090,000 0.008

Strains in cylinder LAN 009 at 10,000-psi external
pressure on the first and second pressurizations:

Calculated

Hoop Axial Compres-

Strain Strain sive Poisson's

(micro- (micro- Modulus Ratio

inch/inch) } inch/inch) {psi) (psi)

1st Cycle 3,184.0 936.6 | 41,450,000 0.242
2nd Cycle 2,986.2 919.6 | 44,770,000 0.227
Difference 197.8 17.0 3,120,000 0.014

Strains in cylinder LAN 011 at 10,000-psi external
pressure on the first and second pressurizations:
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Caiculated
Hoop Axial Compres-
Strain Strain sive Polsson's
{micro- {micro- Modulus Ratio
inch/inch) | Inch/inch) (psi) {psl)
1st Cycle 3,184.0 940.2 ] 41,450,000 0.242
2nd Cycle 3.058.6 934.2 | 43,650,000 0.230
Difference 140.4 6.0 2,200.000 0.012

This phenomenon was first noticed by Dr. Stachiw
in the 6-inch-OD by 9-inch-long cylinders fabri-
cated from the same composition (reference 4).
The decrease in the magnitude of the compressive
strains is not large, but still significant, and indi-
cates that a compaction process is taking place
during the first few pressurizations. Because

Dr. Stachiw was the first to observe and describe
the compaction of the ceramic under hydrostatic
loading, it is referred to in this and other reports as
the Stachiw effect. This compaction process
affects the computed compressive modulus and
Poisson's Ratio of the material. The compressive
modulus and Poisson’s Ratio in columns four and
five of the tables were calculated with the following
equations.

A thick-wall stress equation from reference 7 was
used to compute the expected stress at 10,000-psi
external psi on the ID of the cylinder:

B L
Opiat = a:_bl
_ qza;‘
Ohoop = a’-b?

where q = external pressure
a = outer radius
b = inner radius

Then, the following two equations were solved
simultaneously for compressive modulus and Pois-
son's Ratio:

Eanat = %(oaxul - yahoop)

Ehmp = %(Ghmp - yalxlal)
where E = compressive (Young's) modulus.

The same calculation was repeated for all ten fully-
machined cylinders and the results were summa-
rized (table 10). The average computed
compressive modulus was 42.04 Msi with a stan-
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dard deviation of 0.52 Msi. These values are well
within the range of values measured on specimens
taken from the cylinder ends. A maximum com-
pressive modulus of 42.98 Msi was calculated for
cylinder LAN 001 and a minimum etastic modulus
of 41.45 Msi was calculated for cylinder LAN 011,
The mean Poisson’s Ratio was calculated to be
0.239 with a standard deviation of 0.004.

The strains measured in the two “as-cast” cylin-
ders, LAN 007 and LAN 012, were considerably
lower than those in the fully-machined cylinders.
This is probably because these cylinders had a
slightly greater wall thickness (approximately
0.120 inch thicker) and, therefore, strained less
under equivalent stress.

As stated previously, strains in ail cylinders
remained linear throughout pressurization. Cylin-
ders LAN 008 and LAN 011 were pressurized to
failure; strains remained linear up to about
18,000-psi external hydrostatic pressure. At pres-
sures higher than that, the hoop and axial strains
diverge, indicative of the cylinder going slightly out-
of-round prior to buckling. The failure pressure of
19,000 psi recorded for both cylinders indicates
that the critical pressure is repeatable and vali-
dates both hand and computer calculations. Hand
calculations were based on equation 15.3 of refer-
ence 8 derived for closed-ended housings under
uniform external pressure where the ends of the
cylinder are assumed to be simply supported. The
effective length of the cylinder was calculated as
follows:

L =18 +2(0.09) - 2(0.68) = 16.82

where 18 is the cylinder length in inches, 0.09 is
the bearing thickness of the titanium end caps, and
0.68 equals the engagement iength of the cylinder
with the flat steel end closure.

Computer calculations were made using the com-
puter program BOSOR4 (reference 9). BOSOR4 is
a structural analysis computer program developed
by David Bushnell at Lockheed Missiles and Space
Co., inc., that can be used to predict buckling of
complex shells of revolution, The meridian of the
shell is modeled using a number of segments with
material, geometric, and end-constraint conditions
representative of the actual structure. Buckiing cal-
culations are based on finite difference energy
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minimization and can be computed for a range of
circumferential wave numbers. More details con-
cerning stress and bucking calculations can be
found in reference 10.

The table below summarizes hand and computer
calculations made for two sets of engineering prop-
erties: those calculated from cylinder strains on the
first cycle and those calculated from strains mea-
sured on the second cycle. As one can see, the
experimental critical collapse pressure of the cylin-
ders lies above the hand-calculated resuits and
below the computer-calculated results.

Engineering Hand-

properties used calculated BOSOR4
in collapse coliapse
Cylinder calculation pressure pressure
E = 41.88 Msi . A
.o 0.82839 g 17,625 psi 22,837 psi

LAN 008 = m
* = 43.97 Msi . )
B9V | 1sas0psi | 23833ps
E = 41.45 Msi : .
v <0242 ! 17,463 psi 22,640 psi

LANO11 = =
* = 44.77 Ms .
0027 18,661 psi 23,858 psi

ACOUSTIC EMISSIONS

Acoustic emissions were monitored on cylinders
LAN 008 and LAN 009, and recorded results indi-
cate that emissions drop down to almost zero
beyond the third pressurization. This behavior is in
accordance with the Kaiser Effect which predicts a
decrease in the number of acoustic emissions in a
material. The acoustic data would seem to verify
the “compaction” effect. Figure 53 shows the
acoustic emission data for cylinder LAN 008; the
number of acoustic events decreases from

1,800 events while climbing to 10,000 psi for the
first time, to approximately 100 events by

10,000 psi on the second cycle, and approximately
8 events by 10,000 psi on the third cycle. Acoustic
emissions monitored on cylinder LAN 009 follow a
similar trend.

CYCLIC FATIGUE LIFE

Figure 63 is a plot of the external hydrostatic pres-
sure (and nominal membrane stress) vs. the num-
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ber of pressurizations to failure, or the number of
pressurizations withstood by the test cyiinders.
Examination of the data shows that any attempt to
relate the cyclic performance of the cylinders to the
level of stress to which they have been tested
would be inconclusive. However, the following find-
ings can be formulated on the basis of data gener-
ated in these tests:

1. Three cylinders failed at a relatively low num-
ber of cycles when compared with the perfor-
mance of the other seven cylinders. These
cylinders were LAN 004, LAN 006, and
LAN 007. Cylinders LAN 004 and LAN 006
had ends which were not sand blasted and
were, therefore, probably more susceptible to
leaks and/or epoxy extrusion. Cylinder
LAN 007 had relatively low fracture tough-
ness, however, LAN 012 had equally low frac-
ture toughness and performed many more
cycles than LAN 007. The only material prop-
erty the three cylinders had in common was
that their flexural strength was either close to,
or less than, the average flexural strength of
the twelve cylinders. It may be that flexural
strength is an important material property in
this application. Finite-element stress analysis
has shown that a tensile stress exists near
the bearing surface of the cylinders (refer-
ences 10, 11, and 12).

Pulse-echo C-scans taken of cylinders which
withstood all planned testing indicated that
none of the internal circumferential cracks
extended beyond 0.75-inct, axial length. All
cylinders which had only one end inspected
showed internal circumferential cracking. Cyl-
inder LAN 003, pressurized 464 times to
16,000 psi, was inspected on both ends; spal-
ling was found in only one end. No conclusion
can be made which relates the extent of crack
growth to the stress applied or to the number
of pressure cycles applied.

Dye-penetrant inspection of the exposed
bearing surfaces did not reveal the internal
circumferential cracks.
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CONCLUSIONS

The four main objectives of this study were met:

1. Demonstrate the ability of Lanxide to scale up

the proprietary DIMOX™ process to fabricate
12-inch-OD by 18-inch-long by 0.412-inch-
thick ceramic composite cylinders of equal
quality to the 6-inch-OD by 9-inch-long by
0.206-inch-thick cylinders previously supplied
to NRaD. Determine the uniformity and
repeatability of these composite cylinders in a
quantity scale-up to twelve cylinders.

Lanxide was able to fabricate12-inch-OD by
18-inch-long cylinders with material properties
that either meet or exceed the properties of
the 6-inch-OD by 9-inch-long cylinders
previously supplied. Calculations based on
strains measured during the testing of the
6-inch-OD by g-inch-long cylinders resulted in
a compressive modulus varying between 40
and 45 Msi and a Poisson’s Ratio of approxi-
mately 0.23. The compressive strength of the
material previously delivered in the 6-inch-OD
cylinder was approximately 283,000 psi.

The 12-inch-OD by 18-inch-long cylinders
maintained an average compressive modulus
of 41.6 Msi, Poisson’s Ratio of 0.239, and a
compressive strength of 301.2 psi. The com-
pressive strains in both the 6- and 12-inch-OD
cylinders exhibited the Stachiw Effect (i.e.,
significant permanent deformation of the
ceramic composite during the first compres-
sive loading).

Standard deviations calculated for each of the
measured and/or calculated engineering prop-
erties were small enough to indicate that the
cylinders can be fabricated very uniformly and
repeatedly. Radiographic nondestructive
inspection of the cylinders indicate that these
cylinders can be fabricated free of defects.

. Determine the structural performance of the
cylinders under external hydrostatic pressure
loading. This includes critical collapse pres-
sure, cyclic fatigue life, and performance
repeatability.
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The structural performance of the twelve cyl-
inders turned out to be very good. None of the
cylinders failed in a manner which cannot be
explained. All twelve passed proof tests to at
least 10,000-psi external hydrostatic pressure.
Those failures which did occur were caused
either by cyclic fatigue or by purposely pres-
surizing the cylinders to critical collapse pres-
sure. The two cylinders which were purposely
pressurized to failure not only failed at identi-
cal pressure, 19,000 psi, but failed according
to buckling failure predictions made by hand
calculations and computerized buckling analy-
sis.

Although tests were inconclusive regarding
the relation between the number of pressur-
izations a cylinder can withstand and the
stress level in the cylinder, tests did show that
Lanxide’s 90-X-089 cylinders can withstand at
least 1,000 cycles to 9,000-psi external pres-
sure before failure in the design configuration
presented and tested in this report. In fact, it
is safe to use a maximum nominal design
stress of 182,039 psi in the design of the cyl-
inder if 1,000 pressurizations are to be
expected. Pulse-echo ultrasonic inspection of
cylinders which withstood cyclic pressurization
shows that cracks in those cylinders did not
extend more than 0.75 inch, even after 3,003
cycles to 15,000-psi external pressure
218,447 psi maximum membrane stress.

. Compare the performance of the 90-X-089

cylinders against the baseline composition,
AL-600 96-percent alumina ceramic manufac-
tured by WESGO.

Lanxide 90-X-089 has lower compressive
strength and lower compressive modulus than
WESGO’s AL-600 96-percent alumina
ceramic. However, its density is lower, and it
has higher fracture toughness and higher fiex-
ural strength. The last two properties may
account for why the material has a better
fatigue life than the 96-percent composition
and can, therefore, be designed to higher lev-
els of maximum nominal hoop stress while
maintaining a 1,000-pressure-cycle rating.
The following table compares the material
properties of the two materials.
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AL-600
96-percent Al, 04 | 90-X-089

Compressive strength
(Ksi) 350 301

Compressive modulus
(Msi) 47.0 41.6
Flexural strength (ksi) 47.0 56.2

Fracture toughness

(ksi.wg) 250 759
Specific gravity 3.749 3.365

Table 11 compares the cyclic pressurization
performance of the two materials. The
90-X-089 composition performs better than
the 96-percent alumina-ceramic composition
at all levels of stress. The lower weight of the
material allows designs having lower weight-
to-displacement (W/D) ratios than 96-percent
alumina ceramic. The tahle below compares
the weights of the fully-machined and “as
cast” 90-X-089 cylinder assembilies (including
titanium end caps). The weight of an alumina-
ceramic assembly with identical dimensions is
included for comparison. These weights rep-
resent the actual cylinder assemblies tested,
less the end closures which may be of a
variety of designs.

Displace-
ment in Weight-to-
seawater | Weight displace-
Assembly {Ibs) (lbs) ment ratio
Fully-machined
90-X-089 cylinder 76.9 38.0 0.494
“As-cast”
90-X-089 cylinder 782 405 0.518
AL-600 96-percent ’
alumina-ceramic 76.9 42.0 0.546
cylinder

More optimum W/D ratios are attainable if
design stress levels found to be safe after
testing of these first twelve cylinders are
used. Figure 64 piots the achievable W/D
ratio of cylinders fabricated from Lanxide's

90-X-089 and WESGO's AL-600 96-percent
alumina ceramic having a length-to-diameter
ratio of 1.5 and designed for a cyclic fatigue
life of 1,000 pressurizations to design depth.
In a 12-inch-OD by 18-inch-long cylindrical

assembly, the difference may account for
approximately 2.6 pounds of extra payload
capability for the design to 20,000 feet.
Whether this difference is worth the difference
in cost between the two materials, which
approaches an order of magnitude, has to be
determined by the project manager.

. Determine the ability of the DIMOX™ process

to produce cylinders close enough to net
shape that only the ends of the cylinders
require machining without any loss in perfor-
mance.

Lanxide was able to produce cylinders close
enough to net shape that only the ends of the
cylinder required machining. The data pres-
ented in tables 2, 3, and 4 demonstrates the
very low dimensional changes that occur dur-
ing the DIMOX™ growth process. The growth
process did not affect the basic shape of the
preforms. The dimensional quality of the final
part is basically that of the preform. The key
to getting the most reproducible cylinder com-
ponent (one that requires almost no machin-
ing to meet performance specifications) is to
produce the silicon-carbide preform to the
dimensions and tolerances required in the
final cylinder before the infiltration step.

The most direct way of doing this (using the
casting methods of the 90-X-089 composition)
is to use a precision mold that is rigid and
dimensionally stable during the preform freeze
cycle. It is clear that the fiberglass/rubber
mold used for this program was not dimen-
sionally stable enough to cast preforms that
are round within 0.010 to 0.020 inch. Fabricat-
ing mold elements out of different material,
such as metal or graphite-reinforced epoxy
composite, may be ali that is required to yield
a dimensionally stable mold.

One of the two “as-cast” cylinders failed at a
lower number of cycies than three other cylin-
ders tested at the same level of stress
(182,039-psi nominal hoop stress). Two of
these cylinders were fully machined, and the
third was the other “as-cast” cylinder. “As
cast” cylinder, LAN 007, failed after 531
cycles to 12,500-psi external pressure; the
second “as-cast” cylinder withstood 2,004
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T

cycles to the same test pressure. The differ-
ence cannot be explained easily as both cylin-
ders had relatively low fracture toughness.

Although 85-percent less surface area
requires grinding, the cost savings in grinding
is not reduced by 85 percent. An estimated
$2,000 can be saved by going from the fully-
machined design to the “as-cast” design—a
mere 10-percent reduction in price. The
weight penalty is minimal. The cost savings
are not more substantial because the majority
of the labor required to grind the component is
in setting up the grinding machine and align-
ing it properly. The actual grinding of the com-
ponent can be performed unattended.

Although the cost savings for monocoque
hulls is not as substantial as originally antici-
pated, the DIMOX™ process still has other
advantages. The uniqueness of the DIMOX™
process’ near-net-shape capability lends itself
to geometries that are not practical with tradi-
tional ceramic processing. The incorporation
of integral ribs on the inside walls of monoco-
que cylinders provides greatly improved
design performance in terms of the W/D ratio.
Such ribs can be maciiined into the inside of
the cylinder of iso-pressed parts, but because
of the cost of diamond machining, and the
quantity of material to be removed, this
becomes prohibitively expensive. Green
ceramic cylinders can be machined cost
effectively, and it is possible to machine inter-
nal ribs in a green cylinder. However, tradi-
tional processing of ceramics involves
substantial dimensional changes in the part
during sintering, resulting in very large shrink-
age factors (typically 15 percent or greater).
Geometries with large differences in wall
thickness, such as a cylinder with internal
ribs, are predicted to have residual stresses
between the thinner wall and the thick wall
due 1o their variable shrinkage factors.

Since the DIMOX™ process uses sediment
casting to form the green preform, soft rubber
molds can be used to form integral ribs with
no difficulty. The matrix infiltration process is
essentially free of any dimensional changes in
the preform. There is no variable shrinkage
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problem in infiltrating green preforms with
internal ribs as there is in conventional sinter-
ing. The only development work required
would be in applying iechniques already
developed to control the infiltration rate in the
thinner region {0 stop the directed metal-
oxidation growth front when it reaches the
inside of the thinner wall. This will maintain a
smooth surface while the matrix continues to
grow through the thicker wall areas to com-
plete the infiltration in those areas.

RECOMMENDATIONS

The following recommendations are made based
on the testing performed on the twelve 12-inch-OD
by 18-inch-long by 0.412-inch-thick Lanxide
90-X-089 cylinders:

1.

Lanxide 90-X-089 is recommended for use in
the construction of external pressure housings
up to 12-inch-OD by 18-inch-length. Utilization
of the composition for cylinders with dimen-
sions greater than this is recommended only
after a thorough test and evaluation program.

“As-cast” cylinders can be used for deep sub-
mergence applications; the weight penalty of
using “as-cast” cylinders is negligible, but so
are the cost savings associated with using an
“as-cast” cylinder instead of a fully-machined
cylinder. Therefore, unless delivery schedule
is an important factor, one may as well pur-
chase a fully ground cylinder.

If Lanxide’s 90-X-089 is to be used in an
underwater external-pressure application and
1,000 cycles to design depth are expected,
the design should be such that the maximum
nominal compressive sfress does not exceed
182,039 psi. The following are engineering
properties to be used for engineering calcula-
tions and to be called out on the engineering
drawings:

Compressive Strength: 301,000 psi
Compressive Modulus: 41,600,000 psi

Flexural Strength: 56,200 psi
Fracture Toughness: 7.6 ksi*in1/2
Specific Gravity: 3.365
Poisson's Ratio: 0.24
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Standard finite-element analysis and buckling
analysis can be used to analyze pressure-
housing designs using 90-X-089.

Furthermore, the cylinder assembly design
should incorporate Mod 1, Type 2 end caps
bonded in accordance with note 4 in figure 20
to the ceramic surface prepared in accor-
dance with the grit-blasting procedure outlined
in this report.

. Prior to assembly of the cylindrical assembly,

the ceramic cylinder should be inspected
radiographically. A pulse-echo ultrasonic
inspection using a 3/8-inch diameter, 3-inch
focal length, and 10 MHz transducer may also
be beneficial. The circumferential scanning
interval should be 0.010 inch. However, the
radiographic inspection represents the mini-
mum required inspection.

. The cylindrical ceramic housings after place-

ment in service should be periodically nonde-
structively inspected for presence of
circumferential fatigue cracks in the ceramic
bearing surfaces on the ends of the cylinder.
The frequency of inspections shall depend on
the number of dives that the housing per-
formed to 75 percent of its design depth. The
frequency of inspections recommended for
housings in critical service application is

100 dives, while for noncritical service
applications it is 500 dives.
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6.

In the interest of advancing the stale of
ceramic fabrication technology, it is strongly
recommended that the DIMOX™ process be
scaled up to 20-inch-OD by 30-inch-long cylin-
ders and that these cylinders be evaluated by
cyclic pressurization. This would help deter-
mine whether there are any problems
associated with the scale-up to larger cylinder
sizes as there appear to be with AL-600
96-percent alumina ceramic manufactured by
WESGO (reference 10).

Because the 90-X-089 SiC/Al,O4/Al composi-
tion is not entirely inert to the effects of corro-
sion, it is strongly recommended that all
components, fully-machined and “as-cast,” be
treated with an epoxy coating such as the one
applied by Technicote.

Research should be performed to find a
method to determine residual stresses in
ceramic components by nondestructive
means. This may be of special interest with
components manufactured by the DIMOX™
process, as there is reason to believe that
these components do not have residual
stresses in them because of the fabrication
techniques. If this is found to be true, the
DIMOX™ process will have overcome a prob-
lem which has not yet been overcome in the
fabrication of the AL-600 96-percent alumina-
ceramic components manufactured by
WESGO.
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GLOSSARY

Cvi

DIMOX™

D

L

chemical vapor infiltration

Lanxide’s directed metal
oxidation (process)

inside diameter

Length
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NDE
NOSC

oD
SiC
SR
uuv

w/D

nondestructive evaluation
Naval Ocean Systems Center

outside diameter

silicon carbide

Southwest Research Institute
unmanned underwater vehicle

weight to displacement
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Al, O, network

Figure 1. lllustration of the growth mechanism for the formation of alumina-ceramic
composites via the DIMOX™ process.
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Figure 2. Processing steps to produce a ceramic composite cylinder.
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Centering Ring

——Silicone Rubber

L Casting Cavity

Fiberglas Epoxy
Mother Mold

L— Clamshell Flange
_— (Open)

Securing Buttons

L~""(not shown)

- Index Bead

Figure 5. Schematic of mold design to sediment cast cylinder preforms.
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Figure 6. Rubber/fiberglass cylinder casting mold.
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Figure 9. Preforms with barrier and initiation coatings prior to matrix infiltration.
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Figure 10. Refractory growth shell with preform inside.
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Figure 11. Growth shell being prepared inside the furnace.
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Figure 14. A fully infiltrated cylinder after removal from the refractory shell.
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Figure 15. A fully infiltrated cylinder after shot biasting.
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NG 1/4° FLAT S8OTTOMED HOLE.

SECTION A=A

-8875, QLASS A, PRIOR TO FINAL MACHINING.

W ML-STD-

S ALLOY 4340, NORMALIZED AND TEMPERED, ROUGH TURNED SURFACE CONDITION 1AW MHL-S-5000.
INSPECT 1A 27 USING 1/4°
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STRENGTH AFTER HEAT TREATMENT SHALL BE 180,000 PSI.

Figure 30. 12-inch flat end plate.
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FEATURED RESEARCH

Figure 37.

Type |l test assembly being lowered into pressure chamber.
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FEATURED RESEARCH

Figure 38. “As-cast” cylinder with green epoxy coating, prior to testing.
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Figure 39. Fixture used to remove titanium end caps from ceramic cylinders for crack inspection after
pressure testing.
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Figure 40. Pressure vs. strain plot for cylinder LAN 001.
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Figure 42. Pressure vs. strain plot for cylinder LAN 002.
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Figure 44. Pressure vs. strain plot for cylinder LAN 003.
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Figure 46. Pressure vs. strain plot for cylinder LAN 004.
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Figure 47. Pressure vs. strain plot for cylinder LAN 005.
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Figure 49. Pressure vs. strain piot for cylinder LAN 006.
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Figure 56. Pressure vs. strain plot for cylinder LAN 007.
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Figure 51. Pressure vs. strain plot for the first pressurization of cylinder LAN 008.
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Figure 52. Pressure vs. strain plot for the second pressurization of cylinder LAN 008.
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Figure 53. Acoustic emissions for first, second, and third pressurizations of cylinder LAN 008.
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Figure 54. Pressure vs. strain plot for the first pressurization of cylinder LAN 009.
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Figure 55. Pressure vs. strain plot for the second pressurization of cylinder LAN 009.
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Figure 58. Pressure vs, strain plot for cylinder LAN 010.
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Table 1. Properties of several SiC/Al,O4/Al composites grown by the DIMOX™ process.

COMPOSITION
Property 90-X-089 91-X-1037 90-X-1007
Flexural Strength 383 179 476
MPa (ksi) 56 26 69
Fracture Toughness 7.9 55 6.6
MPa-m'? (ksi-in'?) 7.2 5.0 6.0
I Compressive Strength 2,075 ND ND
MPa (ksi) 301
Modulus of Elasticity 303 391 341
GPa (Msi) 44 57 49
Bulk Density 3.37 3.30 3.43
g/cc
Thermal Conductivity 105 140 88
W/m-K (BUT/h-#-°F) 60 80 50
Thermal Expansion 5.9 calc'd 6.0 7.0
ppm”°C  (ppm/°F) 3.3 calc'd 3.3 3.9
Carbide Loading Y4 73 51
vol%
Residual Metal 18 6 11
vol%
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Table 2. Dimensional analysis of three cylinder preforms.

"CYLINDER | Inside Diameter (mean of six) Outside Diameter (mean of six)
Max Axis Min Axis Max Axis Min Axis
BL 11204 11107 12.139 12018
BM 11.186 11121 12.129 12.088
BO 11157 11098 NA NA
Tolerance* +0.024 0012 _+0.005 $0.025
Table 3. Dimensional analysis of eleven grown cylinders.
[ CYLINDER | Inside Diameter (mean of six) | Outside Diameter (mean of six) __|
* Max Axis Min Axis Max Axis Min Axis
AY 11.163 11.076 12.099 12,037
AZ 11.165 11.077 12.099 12.050
BA 11173 11.082 12.130 12.016
BB 11.164 11.087 12.110 12,028
BC 11.176 11075 12.102 12.042
BD 11.158 11.080 12.105 12.035
BE 11.157 11.085 12,111 12,044
BJ 11.182 11.069 12.121 12.026
BL 11.178 11079 12.137 12016
BM 11.172 11.099 12.111 12.061
BO 11.164 11.092 NA NA
MAX 11182 11008 12137 12.061
MN 11157 11080 12.099 12,016
MEAN 11168 11082 12113 12.036
RANGE 0025 0.030 0.038 0.045
TOLERANCE® 0018 0015 0.019 0.023
Std. Dev. 0.008 0.008 0.018 0014
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Table 4. Dimensional changes during growth for three cylinders.

[ CYLINDER | Inside Diameter __ (781 “Outside Diameter ‘gyg each)
Mean AID Std Deviation Mean AID Deviation

BL 0.022 0012 0.004 0.010

BM -0.018 0.006 0.007 0.006

BO 0.000 0.006 NA NA
MAX 0.011 (of 234) —_ 0.024 (of 166) —

MN 0.060 (of 234) — 0.031 (of 156) -
MEAN <0.013 (of 234) -— <0.002 (of 156) -
1d. Dev. 0.013 (of 234) — 0.010 (of 156) -
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Table 5. Dimensional changes occurring during the growth of cylinder 3375-BL.

15° incremen!
Circumference

direction from!
index mark,

180°

OD DIMENSIONS - PART 3375-BL  [Dimensions of Grown Part minus

PhScoomaoanwwx

13

LENGTH (in 3" increments)

TOP BOTTOM
1 2 3 4 [ 8

0.007 0.015 0.020 0.013 0.011 0.024
0.002 0.013 0.013 0.014 0.010 0.017
<0010 0.008 0.007 0.004 -0.001 0.009
0.012 0.000 0.001 0.010 0.003 -0.001
-0.017 0.000 -0.008 -0.005 0.004 0.007
-0.011 0.000 -0.003 -0.009 0.001 -0.001
-0.010 0.006 0.001 -0.009 -0.081 -0.011
-0.010 0.000 0.002 -0.012 -0.007 -0.014
-0.002 0.010 0.021 -0.007 -0.008 -0.012
0.007 0.012 0.004 0.000 0.000 -0.003
0.013 0.017 0.010 0.009 0.009 0.009
0.015 0.009 0.010 0.008 0.016 0.019
0.010 0.010 0.009 0.012 0.010 0.017

0.015

-0.006

mean <0.001 0.008 0.007 0.002

-0.012

0.017
0.015
0.019
0.022
0.024
0.012
0.037
0.016
0.033
0.0156
0.008
0.011

0001 0.005| 0004 avgofall |
0.017 0.021 0.014 0.016 0.024

min  -0.017 0.000
_range 0032 0017 0027 0026 0047 0038

-0.031 -0.014

0° 1
2
8
15° incremen! 4
Around 5
Circumference 6
in CCW 7
direction from 8
index mark. 9
10
1
12
180°} 13

mean

max

min

LENGTH (in 8" increments)
TOP BOTTOM
1 2 3 4 6 ] mean range
-0.012 .0.010 -0.015 -0.012 -0.020 -0.020 -0.015 0.010
-0.011 -0.011 -0.012 -0.019 -0.022 -0.024 -0.017 0.013
0.016 -0.012 -0.010 -0.016 -0.030 -0.029 -0.019 0.020
-0.022 -0.015 -0.020 -0.015 -0.025 -0.019 -0.019 0.010
-0.042 -0.030 -0.025 -0.029 -0.033 -0.014 -0.029 0.028
-0.057 -0.060 -0.043 -0.026 -0.033 -0.034 -0.042 0.034
-0.038 -0.044 -0.027 -0.029 -0.024 -0.033 -0.033 0.020
0.032 -0.036 -0.036 -0.032 -0.014 -0.020 -0.028 0.022
-0.031 -0.024 -0.026 -0.025 -0.018 -0.019 .0.024 0.015
0.0156 -0.013 -0.018 -0.028 -0.029 -0.023 -0.021 0.016
-0.003 -0.014 -0.022 -0.019 -0.023 -0.029 -0.018 0.026
0.009 -0.008 -0.021 -0.017 -0.022 -0.021 -0.018 0.031
0.002 -0.002 -0.011 -0.009 -0.022 -0.021 <0.011 0.024
0.021 -0.021 -0.022 -0.021 -0.024 -0.024] -0.022 avpgofall |
0.009 -0.002 -0.010 -0.009 -0.014 -0.014] 0009  maxofall |
-0.0567 -0.060 --0.043 -0.032 -0.083 -0.034 __-_ng___mmiau_‘
0012 _ stddev |
0,069 range of all |
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Table 6. Dimensional changes occurring during the growth of cylinder 3375-BM.

OD DIMENSIONS - PART 8375-BM Dil.nemions of Grown Part minus
LENGTH (in 8" increments)
TOP BOTTOM
1 2 3 4 5 6 mean ranfe
0° 1 0.005 -0.004 -0.002 -0.012 -0.0056 -0.012 -0.005 0.017
2 0.004 -0.006 0.002 -0.012 0.003 -0.012 -0.008 0.016
3 0.001 -0.004 -0.001 .0.007 -0.001 -0.012 -0.004 0.013
15° incremen 4 0.001 -0.007 -0.008 -0.001 -0.004 0.000 -0.003 0.009
Around 5 -0.004 -0.008 0.000 -0.008 -0.009 -0.014 -0.007 0.014
Circumference 6 -0.006 -0.015 -0.008 -0.010 -0.014 -0.012 -0.011 0.009
in CCW 7 -0.009 -0.014 -0.006 -0.010 -0.015 -0.015 -0.012 0.009
direction from 8 -0.004 -0.011 -0.009 -0.010 -0.016 -0.018 -0.011 0.014
index mark. 9 0.000 -0.007 -0.008 -0.007 -0.010 -0.018 -0.008 0.018
10 0.002 -0.005 -0.004 -0.008 -0.018 -0.016 -0.008 0.020
11 0.003 0.000 -0.002 -0.005 .0.013 -0.013 -0.008 0.016
12 0.001 0.007 -0.005 0.005 -0.012 -0.018 -0.004 0.025
180°) 13 0.001 0.007 -0.010 -0.004 -0.008 -0.011 -0.004 0.018
mean 0.000 -0.005 -0.008 -0.007 -0.009 -0.013 ’__-Q,M_m_ﬁnu_
max 0.005 0.007 0002 0006 0003 0000} 0007 maxofall
min -0.009 -0.015 -0.010 -0.012 -0.018 -0.018| _-0.018 minofall |
_ range 0014 0022 0012 0017 0021 0018} 0008  stddev |
L_0.025  range ofalll
ID DIMENSIONS PART 38875-BM IDignensior;s of Grown Part minus
LENGTH (in 8" increments)
TOP BOTIOM
1 2 3 4 b 6 mean range
0° 1 -0.014 -0.010 -0.018 -0.014 -0.013 -0.023 -0.015 0.013
2 0016 -0.010 -0.012 -0.012 -0.013 -0.018 -0.0138 0.008
3 -0.014 -0.013 -9.012 -0.010 -0.016 -0.024 0015 ~ 0.014
15° increments| 4 -0.013 -0.009 -0.012 -0.013 -0.020 -0.016 -0.014 0.011
Around 5 0.006 0.008 -0.017 -0.015 -0.022 -0.015 -0.009 0.030
Circumference 6 <0.023 -0.021 .0.019 -0.023 -0.024 -0.021 -0.022 0.005
in CCW 7 -0.022 -0.029 -0.022 -0.022 -0.020 -0.019 -0.022 0.010
direction from 8 -0.022 -0.025 -0.023 -0.024 -0.022 -0.024 -0.028 0.003
index mark. 9 -0.024 -0.024 -0.025 -0.020 -0.016 -0.025 -0.022 0.008
10 -0.026 -0.021 -0.023 -0.017 -0.022 -0.022 -0.022 0.008
11 -0.016 -0.017 -0.020 -0.024 -0.029 -0.024 -0.022 0.013
12 -0.014 -0.014 -0.019 -0.017 -0.030 -0.025 -0.020 0.016
180°] 13 -0,011 -0.010 -0.018 -0.018 -0.016 -0.021 -0.016 0.011
mean -0.016 -0.015 -0.018 -0.018 -0.020 -0.021| -0018 avgofall |
max 0.006 0.008 -0.012 -0.010 -0.013 -0.016 M
min  -0.026 -0.029 -0.0?5 -0.024 -0.030 -0.025] _-0,030 _ minofall |
| range 0030 0037 0013 00}4 0017 0010] 0008 _ stddev
| 0.088  range of a]l
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Table 7. Dimensional changes occurring during the growth of cylinder 3375-BO.

0°

15° increments|

180°

88

ID DIMENSIONS PART 8375-BO  [Dimensions of Grown Part minus

LENGTH (in 3" increments)
OP BOTTOM
1 2 3 4 5 6 mean range
1 0.007 0.007 0.0068 0.0068 0.006 0.006 0.008 0.001
2 0.008 0.000 0.007 0.004 0.009 0.002 0.005 0.009
3 0.008 0.005 0.007 0.005 0.011 0.008 0.007 0.006
4 0.007 0.007 0.008 0.007 0.007 0.002 0.008 0.008
5 0.003 0.001 -0.001 0.003 0.004 0.001 0.002 0.005
6 -0.006 -0.002 -0.006 -0.003 -0.006 -0.007 -0.005 0.005
7 -0.006 -0.008 -0.009 -0.008 -0.010 -0.009 -0.008 0.004
8 -0.007 -0.007 -0.011 -0.010 -0.007 -0.009 -0.008 0.004
9 -0,006 -0.005 -0.006 -0.008 -0.006 -0.008 -0.008 0.003
10 -0.001 -0.001 -0.004 -0.003 -0.004 -0.008 -0.003 0.007
11 0.001 0.001 -0.002 -0.002 -0.003 -0.006 -0.002 0.007
12 0.004 0.005 0.004 0.003 -0.002 0.002 0.003 0.007
13 0.008 0.008 0.006 0009 0.004 0.007 0.007 0.005
mean 0.002 0.001 0.000 0.000 0.000 -0.001] 0000  avgofall |
max 0.008 0.008 0.008 0009 0.011 0.008}| 0011 _ maxofall |
min  -0.007 -0.008 -0.011 .-0.010 -0.010 -0.009{ -0.011 min of all
an__n&ummumum_o.m_q.m__amm_
L_0.022 rangeofalll
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Table 9. Summary of pressure test plans and results for cylinders LAN 001 through LAN 012, Sheet 1.

Cylinder No. Test Test Plan/Test Resuit
Configuration

LAN 001 | Proof test cylinder to 12,000 psi, read strains. Cycle
cylinder to 12,000 psi, stop testing after 2,000 cycles.

1-proof cycle to 12,000 psi, no damage noted. Cylinder
completed 2,000 cycles to 12,000 psl, no leaks or
damage noted.

LAN 002 1} Proof test cylinder to 12,500 psi, read strains. Cycle
cylinder to 12,500 psi, stop testing after 3,000 cycles.

1-proof cycle to 12,500 psi, no damage noted. Cylinder
falied on cycie number 1,968 during pressurization.

LAN 003 | Proof test cylinder to 16,000 psi, read strains. Cycle
cylinder to 16,000 psi, stop testing after 500 cycles.

1-proof cycle to 16,000 psl, no damage noted.
Terminated test with 464 cycles completed.No failure.

LAN 004 ] Proof test cylinder to 13,000 psi, read strains. Cycle
cylinder to 13,000 psi, stop testing after 2,000 cycles.

1-proof cycle to 13,000 psi, no damage noted. Cylinder
failed on cycie number 801 during pressurization.

LAN 005 ] Proof test cylinder to 12,500 psi, read strains. Cycle
cylinder to 12,500 psi, stop testing after 3,000 cycles.

1-proof cycle to 12,500 psl, no damage noted. Cylinder
completed 2,902 cycles, no damage noted. Test was
terminated due to leak in tank.

LAN 006 ] Proof test cylinder to 14,000 psi, read strains. Cycle
cylinder to 14,000 psi, stop testing after 1,000 cycles.

1-proof cycle to 14,000 psl, no damage noted. Cylinder
falled on cycle number 331 during pressurization.
S _
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Table 9. Summary of pressure test plans and results for cylinders LAN 001 through LAN 012, Sheet 2.

Cylinder No.

Test
Configuration

Test Plan/Test Result I

LAN 007

1]
"as-cast”
sand-blasted ends

Proof test cylinder to 12,500 psi, read strains. Cycle
cylinder to 12,500 psi, stop testing after 3,000 cycles.

1-proof cycle to 12,500 psl, no damage noted. Cylinder
falled on cycle number 531 during pressurization.

n
sand-blasted ends

Proof test cylinder to 10,000 psi. Monitor acoustic
emissions. Pressurize cylinder to failure

1-proof cycle to 10,000 psi. Cylinder falled at 19,000
psl.

LAN 009

mn
sand-blasted ends

Proof test cylinder to 15,000 psi, read strains. Cycle
cylinder to 15,000 psi, stop testing after 3,000 cycles.

2-proof cycles to 15,000 psl, no damage noted. Cylinder
completed 3,003 cycles, no damage noted.

LAN 010

]
sand-blasted ends

Proot test cylinder to 13,000 psi, read strains. Cycle
cylinder to 13,000 psi, stop testing after 3,000 cycles.

1-proot cycle to 13,000 psl, no damage noted. Cylinder
completed 3,001 cycles, no damage noted.

gty

LAN 011

1]
sand-blasted ends

Proof test cylinder to 10,000 psi, read strains. Then
pressurize cylinder to failure, read strains at 1,000 psi
intervals to 18,000 psi, then at 100 psi intervais.

1-proof cycle to 10,000 psi, no damage noted. Cylinder
failed at 19,000 psl on second cycle.

LAN 012

]|
"as-cast"
sand-blasted ends

Proof test cylinder to 12,500 psi, read strains. Cycle
cylinder to 12,500 psi, stop testing after 2,000 cycles.

1-proof cycle to 12,5000 psl, no damage noted. Cylinder

completed 2,004 cycles, no damage noted.
_m }
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Table 11. Summary of cyclic pressure testing of Lanxide’s 90-X-089 composite and comparison with the

performance of AL-600 96-percent Al,O4 ceramic manufactured by WESGO.

External

Maximum nominal

Number of pressurizations

hydrostatic hoop stress
prassure (psi) (psi) Lanxide 90-X-089 Wesgo AL600
SiC/ALO,/Al 96% Al,QO,
cylinder cylinder
9,000 131,067 withstood 3,000 l
10,000 145,631
| 11,000 160,194 withstood 1,380
failure at 2,969
12,000 174,757 withstood 2,000 failure at 1,065
12,500 182,039 failure at 531
failure at 1,968
withstood 2,004
withstood 2,902
13,000 189,320 tailure at 801 failure at 762
withstood 3,001
14,000 203,883 failure at 331 failure at 214
15,000 218,447 withstood 3,003 failure at 707

233,010

94

withstood 464
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APPENDIX A: THE PROTOTYPE
12-INCH-OD BY 12-INCH-LONG SiC/
Al,05/Al CERAMIC COMPOSITE

Cé'LI DER FABRICATED BY LANXIDE
CORPORATION

A-1
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FIGURES

A-1. A 12-inch-OD by 12-inch-long by 0.42-inch-thick ceramic cylinder with Mod 1 titantium end caps
fabricated by Lanxide from SiC/Al»O4/Al composite by the DIMOX™ process.

A-2.  Insertion of wooden plug inside the cylinder for shock mitigation.

A-3.  Placement of steel bulkheads on the ends of the ceramic cylinders.

A-4.  Lowering of the test assembly into the pressure vessel at SRI.
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APPENDIX A: THE PROTOTYPE
12-INCH-OD BY 12-INCH-LONG SiC/
Al,04/Al CERAMIC COMPOSITE
CYLINDER FABRICATED BY LANXIDE
CORPORATION

INTRODUCTION

The Navy has a requirement for lightweight pres-
sure housings for its unmanned deep submer-
gence, underwater vehicles. Ceramics appear to
be the ideal material for this application. The Naval
Command, Control and Ocean Surveillance Center
(NCCOSC) RDT&E Division (NRaD) has found
that the Lanxide DIMOX™ process appears to be
particularly well suited for fabrication of cylinders
and hemispheres from SiC/Al,O3/Al ceramic com-
posite that provides these components with supe-
rior fracture toughness.

To develop the fabrication process for cylinders
NOSC' awarded a contract in 1990 to Lanxide
Corporation. The output of that contract was a
series of 6.039-inch-OD by 9-inch-long by
0.206-inch-thick cylinders that subsequently were
pressure tested to destruction by MDSC. The test
results indicate that the compressive strength of
the ceramic composite under biaxial compression
is 2 326,000 psi and its modulus of elasticity
E=44.5 x 106 psi. The material was found to
exhibit a permanent deformation of 0.025 percent
after several loading cycles to —150,000 psi com-
pressive cycles.

Encouraged by the outstanding performance of the
Lanxide 90-X-089 ceramic composite 6-inch scale-
model cylinders, NRaD awarded a second contract
in 1992 for the development of a process for fab-
rication of 12-inch-OD by 18-inch-long by
0.412-inch-thick cylinders. This test report summa-
rizes the structural performance of the first suc-
cessful 12-inch-OD cylinder fabricated by the
DIMOX™ process from Lanxide 90-X-089 ceramic
composite.

This cylinder was fabricated at contractor’s
expense, and delivered to NRaD prior to award of

'NRaD was previously Naval Ocean Systems Center (NOSC).

the contract to serve as a proof of contractor’s abil-
ity to fabricate such cylinders.

CYLINDER DESCRIPTION

The physical characteristics of the cylinder are:

Outside diameter = 12.03 inches
Length = 12.0 inches
Thickness = 0.420 inch
Weight = 2252 Ibs

(10,201

grams)
Density = 0.122 Ibsfind
Compressive = 315,000 psi
strength

The 12-inch-long cylinder was obtained by cutting
away rings from an 18-inch-long cylinder fabricated
from Lanxide 90-X-089 (500 grit SiC with a grown
aluminum oxide matrix) by the DIMOX™ process.
The compressive strength of the ceramic compos-
ite in the cylinders was determined by testing of
specimens machined from rings removed from
both ends of the cylinder.

TEST SETUP

Titanium end caps, type Mod 1, were bonded to
both ends of the cylinder with epoxy adhesive
(figure A1). The thickness of the epoxy interlayer
between the plane ceramic bearing surface and
the titanium seat varied from 0.010 to 0.015 inch.
The epoxy interlayer was formulated from 100
parts CIBA Geigy 6010 resin and 70 parts CiBA
Geigy 283 hardener.

The cylinder was instrumented on the interior sur-
face with rectangular strain gages, type CEA-06-
12SWT-350. Gages 1 through 5 were located at
72-degree intervals at midbay, while gages 6
through 10 were located in a single line from
midbay to one of the cylinder ends at 0.91-inch
intervals.

After strain gage instrumentation, the cylinder was
placed on a steel bulkhead that provided the cylin-
der with axial and radial support. This was followed
by inserting a loosely fitting wooden plug into the
cylinder for mitigation of shock loading to the pres-
sure vessel generated by implosion of the vessali
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(figure A2). Placing a second bulkhead on top of
the cylinder and tightening the external tie rods
completed the test assembly (figure A3).

After potting of strain gage leads into bulkhead
penetrators screwed into the steef bulkhead and
the pressure vessel cover, the test assembly was
lowered into the pressure vessel (figure A4). Lock-
ing the pressure vessel cover completed prepara-
tions for testing.

TEST PROCEDURE

The pressure inside the vessel was raised at
1,000-psi intervals to 10,000 psi, and the strains
were recorded. After a one-minute hold, the vessel
was depressurized and the strains were read
again. The pressurization was repeated 20 times
and the strains were recorded. After the 20th pres-
surization, the strain recording equipment was dis-
connected and the pressure cycling from 50 to
10,000 psi was placed on automatic control.
Acoustic emissions generated by the ceramic cyl-
inder test assembly also were monitored during the
first 20 pressure cycles by a transducer bonded to
the exterior of the pressure vessel.

TEST RESULTS

1. The ceramic cylinder imploded during the
pressurization in the 826th pressure cycle to
10,000 psi. The failure was catastrophic.

2. The average hoop and axial strains at midbay
under 10,000-psi pressure generated a
148,250 psi hoop and 74,140 psi. Axial
stresses on the interior surface were:

Pressure Cycie { Hoop | Axial strain
strain
1st -3164 ~-973
2nd -3025 -961
3rd -3011 -937

3. The acoustic emissions decreased from 1,600
events during the first, to 20 events during the
20th cycle, displaying a typical Kaiser effect.

FINDINGS

The cyclic fatigue life at 10,000 psi of the
12-inch-OD cylinder fabricated from Lanxide
90-X-089 and equipped with NOSC type Mod 1
titanium end caps equals, or exceeds, that of
94-percent alumina-ceramic cylinders with identical
dimensions at 74,000-psi axial bearing loading. At
9,000-psi design pressure, the cyclic fatigue life
will, in ali probability, exceed 1,000 cycles.

The strains measured on the interior surface of the
12-inch-OD cylinder are identical to the strains pre-
viously measured on the interior of 6-inch-OD
cylinders after adjustments have been made for a
slight difference in scaling ratio.

CONCLUSIONS

1. The material properties of the Lanxide
90-X-089 ceramic composite in the
12-inch-0OD cylinder are identical to the mate-
ria} properties of the same composite in
6-inch-OD cylinders.

2. The fabrication process for producing large
cylinders from Lanxide 90-X-089 ceramic
composite appears to have satisfied all the
criteria associated with the scaling up of
laboratory type processes.

A-4
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Figure A-2. Insertion of wooden plug inside the cylinder for shock mitigation.

A-6




FEATURED RESEARCH

Figure A-3. Placement of steel bulkheads on the ends of the ceramic cylinders.
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Figure A-4. Lowering of the test assembly into the pressure vessel at SRI.
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APPENDIX B: SALT FOG TEST
RESULTS

B-1
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‘ ARTECH CORP.

14554 Lee Road ¢ Chantilly, Virginia 22021-1632
(703) 378-7263 » Washington, D.C. Metro (703) 968-TEST e Fax (703) 378-7274

May 18, 1983

Mr. Thomas A. Johnson
Lanxide

P. 0. Box 6077
Newark, DE 19714-6077

SubJect: zlt Fog Testing of Torpedo Coupon. Confirmation of Telephone
port. :

Reference: P. 0. no. R043571
ARTECH J8301.151

Dear Mr. Johnson:

A sample coupon, 3 inches by 8 inches with a curved surface, green
in color on the outer face and edges and grey on the inner face, was
submitted to ARTECH with a request to perform a salt fog/spray test (per
ASTM B-117) for forty-eight hours. Conditions in the cabinet were
maintained at 95°F, with a 5% sodium chloride solution supplying a
condensing fog. The sample was exposed for 48 hours, as requested.

The sample was removed from the chamber at the end of the exposure
preriod and rinsed with clean water. The painted surfaces show no sign
of rust or corrosion. The unpainted inner surface shows a small amount
of white deposit which is easily removed from the surface. The tested
coupon is being returned with this letter.

If ARTECH can be of any additional assistance, on this or other
matters, please contact us at any time.

Simelyl
ARTECH CORP

Wit W. P Aot
Keith W. Flohr
Manager, Analytical Services
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APPENDIX C: ENGINEERING DRAW-
INGS OF TEST BAR SPECIMEN
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APPENDIX D: TEST SUMMARY:
MATERIAL PROPERTIES AND
PRESSURE TESTING

.
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TABLES

]
i
i
D-1.  Test result summary, Cylinder No. LAN 001, 3375-AU.
D-2.  Testresult summary, Cylinder No. LAN 002, 3375-BV. l
D-3. Raw data: Cylinder No. LAN 001, 3375-AU.
D-4. Raw data: Cylinder No. LAN 002, 3375-BV. .
D-5.  Test result summary, Cylinder No. LAN 003, 3375-BT.
D-6.  Test result summary, Cylinder No. LAN 004, 3375-BU. '
D-7. Raw data: Cylinder No. LAN 003, 3375-BT.
D-8. Raw data: Cylinder No. LAN 004, 3375-BU. .
D-9.  Test result summary, Cylinder No. LAN 005, 3375-BS.
D-10. Test resuit summary, Cylinder No. LAN 006, 3375-BX.
D-11. Raw data: Cylinder No. LAN 005, 3375-BS. I
D-12. Raw data: Cylinder No. LAN 006, 3375-BX.
D-13. Test result summary, Cylinder No. LAN 007, 3375-BO (as cast). '
D-14. Test result summary, Cylinder No. LAN 008, 3375-CB.
D-15. Raw data: Cylinder No. LAN 007, 3375-BO. .
D-16. Raw data: Cylinder No. LAN 008, 3375-CB.
D-17. Test result summary, Cylinder No. LAN 009, 3375-BR. '
D-18. Test result summary, Cylinder No. LAN 010, 3375-BQ.
D-19. Raw data: Cylinder No. LAN 009, 3375-BR. .
D-20. Raw data: Cylinder No. LAN 010, 3375-BQ.
D-21. Test result summary, Cylinder No. LAN 011, 3375-BW. '
D-22. Test result summary, Cylinder No. LAN 012, 3375-AZ (as cast).
D-23. Raw data: Cylinder No. LAN 011, 3375-BW. '
D-24. Raw data: Cylinder No. LAN 012, 3375-AZ.
i
i
|
i
i
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Table D-1. Test result summary, Cylinder No. LAN 001, 3375-AU.

SI Units English Units
Top Bottom Top Bottom
Density gm/cc (Ib/cu.in) 3.374 3.364 0.1218 0.124
Fiexural Strength MPa (ksi) 386+6 385129 56+0.9 55.8+4.2
Comp. Strength MPa (ksi) 2052+ 84 2105+43 |297.6+12.2 ) 305.3+6.2
Young's Modulus GPa (Msi) 277+0.8 296+ 21 40.2+0.1 429+3.0
Fracture Toughness |MPa*m172 (ksi*in1/2) 895+09 | 898+0.6 | 814+0.8 | 8171055
Content:
% Metal % Filler % Matrix % Porosity
Top Bottom Top Bottom Top Bottom Top Bottom
18.55 19.84 52.73 52.58 28.37 27.37 0.34 0.21
Pressure Test:  Tested with titanium hemispheres. One proof test to 12,000 psi withstood 2,000 cycles to
12,000 psi. No leaks or damage noted.
Table D-2. Test result summary, Cylinder No. LAN 002, 3375-BV.
SI Units English Units
Top Bottom Top Bottom
Density gm/cc (Ib/cu.in) 3.381 3.379 0.122 0.122
Flexural Strength MPa (ksi) 430+ 18 418 + 21 62.4+2.6 60.6+3.0
Comp. Strength MPa (ksi) 1957 + 87 1855192 |283.8+12.6 |269.0+13.3
Young's Modulus GPa (Msi) 293+ 022 2685 425+3.2 38.9+0.7
Fracture Toughness |MPa*m1/2 (ksi*in1/2) 9.02+0.9 | 9.00+09 | 8.21+0.82 | 8.19+0.82
Content:
% Metal % Filler % Matrix % Porosity
Top Bottom Top Bottom Top Bottom Top Bottom
18.46 18.98 48.86 49.66 32.10 31.10 0.58 0.27
Pressure Test:  Tested with flat stee! plates. One proof test to 12,500 psi tailed after 1,967 cycles to 12,500 psi.
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Table D-3. Raw data: Cylinder No. LAN 001, 3375-AU.
Sample Flexural Strength Toughness Compressive Strength Modulus
No. (MPa) (MPa*m1/2) (MPa) (GPa)
Top Bottom Top Bottom Top Bottom Top Bottom
1 387.740 386.731 8.020 9.620 2116.6 21329 283.1 276.6
2 389.364 435.522 10.079 9.714 2170.6 2065.9 284.8 277.2
3 380.282 374.370 9.564 8.692 1976.4 2084.0 320.7 275.6
4 387.040 389.751 7.847 8.193 1954.0 2068.0
5 397.347 388.078 8.911 8.426 2073.6 2101.5
6 382.583 337.471 9.783 9.186 2020.6 21759
7 379.787 382.408 8.424 9.054
8
9
10
Mean 386.307 384.904 8.947 8.984 2052.0 2104.7 296.2 276.5
Min 379.787 337.471 7.847 8.193 2065.9 2065.9 2831 275.6
Max 397.347 435.522 10.079 9.714 2175.9 2175.9 320.7 277.2
Standard
Deviation 6.144 28.770 0.885 0.578 83.7 42.8 21.2 0.8
Table D-4. Raw data: Cylinder No. LAN 002, 3375-BV.
Sample Flexural Strength Toughness Compressive Strength Modulus
No. (MPa) (MPa*m1/2) (MPa) (GPa)
Top Bottom Top Bottom Top Bottom Top Bottom
1 428.178 433.843 10.329 9.475 1936.6 1834.8 268.6 270.0
2 459.764 404.350 9.712 9.187 2118.0 1890.4 306.8 270.6
3 409.432 439.299 8.849 9.634 1964.6 1845.0 304.7 262.4
4 417.821 369.495 7.934 7.091 1958.3 1979.4
5 434.598 417.124 8.390 8.031 1898.7 1726.3
6 445.398 425.793 7.846 10.207 1866.4
7 422.997 420.459 9.945 9.383
8 422.140 9.161 9.241
9 430.969 8.766
10
Mean 430.027 418.164 9.021 9.002 1957.0 1855.2 293.4 267.7
Min 409.432 369.495 7.846 7.091 1866.4 1726.3 268.6 262.4
Max 459.764 439.299 10.329 10.207 2118.0 1979.4 306.8 270.6
Standard
Deviation 17.612 20.905 0.930 0.933 87.2 91.9 215 4.5
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Table D-5. Test result summary, Cylinder No. LAN 003, 3375-BT.

S1 Units English Units
Top Bottom Top Bottom
Density gm/cc (Ib/cu.in) 3.369 3.360 0.1216 0.1212
Flexural Strength MPa (ksi) 370+ 24 403+ 20 53.6+35 58.5+2.9
Comp. Strength MPa (ksi) 207967 2090+28 | 301.5+9.7 | 303.1+3.3
Young's Modulus GPa (Msi) 302+ 22 308 +28 43.8+3.2 447 +4.1
Fracture Toughness |MPa*m1/2 (ksi*in'/2) 8.00+0.3 | 792+1.4 | 728403 [ 7.21£1.3
Content:
% Metal % Filler % Matrix % Porosity
Top Bottom Top Bottom Top Bottom Top Bottom
20.24 20.72 52.05 53.82 27.57 25.34 0.14 0.12
Pressure Test:  Tested with flat steel plates. One proof test to 16,000 psi withstood 464 cycles to 16,000 psi. No

leaks or damage noted.

Table D-6. Test result summary, Cylinder No. LAN 004, 3375-BU.

SI Units English Units
Top Bottom Top Bottom
Density gm/cc (Ib/cu.in) 3.371 3.326 0.1217 0.1201
Fiexural Strength MPa (ksi) 394+ 23 374+ 31 57.14+£3.3 | 54.241+4.5
Comp. Strength MPa (ksi) 2116+ 47 2216+32 | 306.9+6.8 | 321.4+4.6
Young'’s Modulus GPa (Msi) 286+ 1 29743 41.5%0.1 43.1+0.4
Fracture Toughness |MPa*m172 (ksi*in1/2) 9.02+08 | 806+0.6 | 82107 | 7.33+05
Content:
% Metal % Filler % Matrix % Porosity
Top Bottom Top Bottom Top Bottom Top Bottom
18.53 17.53 53.82 52.77 27.57 29.57 0.08 0.13
Pressure Test:  Tested with flat steel plates. One proof test to 13,000 psi failed after 801 cycles to 13,000 psi.
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Table D-7. Raw data: Cylinder No. LAN 003, 3375-BT.
Sample Flexural Strength Toughness Compressive Strength Moduius
No. (MPa) (MPa*m1/2) (MPa) (GPa)
Top Bottom Top Bottom Top Bottom Top Bottom
1 348.646 405.897 8.114 6.519 1958.3 2107.7 326.0 275.9
2 376.200 394.685 7.866 8.222 | 2085.3 2080.2 296.1 327.3
3 325.778 407.434 8.310 10.221 21124 2069.4 282.8 319.7
4 387.815 428.974 8.287 7.169 | 2073.3 2087.9
5 411.814 391.044 7.632 9.222 2081.4 2066.0
6 355.612 372.279 7.802 7.689 | 2160.9 2125.8
7 384.912 417.791 6.399
8 359.100 369.747
9 375.425 417.791
10 373.822 419.661
Mean 369.912 402.531 8.003 7.920 2078.6 2089.5 301.7 307.7
Min 325.778 369.747 7.632 6.399 1958.3 2066.0 282.8 375.9
Max 411.814 428.979 8.310 10.221 2160.9 21258 326.0 327.3
Standard
Deviation 21.823 20.214 0.278 1.413 67.0 23.2 221 277
Table D-8. Raw data: Cylinder No. LAN 004, 3375-BU.
Sample Flexural Strength Toughness Compressive Strength Modulus
No. (MPa) (MPa*m12) {MPa) (GPa)
Top Bottom Top Bottom Top Bottom Top Bottom
1 390.763 385.325 10.222 7.630 | 21082 22448 284.9 299.8
2 408.959 384.677 8.043 7.336 | 20929 2215.9 286.0 295.9
3 388.217 413.211 9.265 8937 | 21715 2199.8 285.6 294.2
4 394.971 371.865 9.175 8.128 2091.7 2175.9
5 405.816 404.856 8.090 8.355 21737 2262.7
6 340.170 347.078 9.649 8.498 2058.4 2199.2
7 398.150 338.773 8.680 7.551
8 429.485 414.414
9 404.686 332,061
10 382.402 352.158
Mean 394.362 374.442 9.018 8.062 21161 2216.4 285.5 2¢6.6
Min 340.170 332.061 8.043 7.336 | 2058.4 2175.9 284.9 294.2
Max 329.485 414.414 10.222 10.222 | 2173.7 2262.7 286.0 299.8
Standard
Deviation 23.165 30.857 0.802 0.580 46.7 32.1 0.6 29
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Table D-9. Test result summary, Cylinder No. LAN 005, 3375-BS.

SI Units English Units
Top Bottom Top Bottom
Density am/cc (Ib/cu.in) 3.367 3.367 0.1215 0.1215
Flexural Strength MPa (ksi) 397117 365+ 29 576125 529142
Comp. Strength MPa (ksi) 2154+ 46 2075+17 | 312.4+6.7 | 300.9+2.5
Young's Modulus GPa (Msi) 292+20 287 +27 42.4+29 41.6+3.9
Fracture Toughness | MPa*m?/2 (ksi*in/2) 9.13+1.1 | 9.75+1.0 | 831+1.0 | 8.87+09
Content;
% Metal % Filler % Matrix % Porosity
Top Bottom Top Bottom Top Bottom Top Bottom
18.73 19.96 54,26 52.33 26.88 27.58 0.12 0.13

Pressure Test:

leaks or damage noted.

Table D-10. Test result summary, Cylinder No. LAN 006, 3375-BX.

Tested with flat stee! plates. One proof test to 12,500 psi withstood 2,902 cycles to 12,500 psi. No

S! Units English Units
Top Bottom Top Bottom
Density gm/cc (Ib/cu.in) 3.372 3.368 0.1217 0.1216
Flexural Strength MPa (ksi) 385+ 21 388:+23 55.8+3.0 56.3+3.3
Comp. Strength MPa (ksi) 2200+141 | 2120+44 [319.1x20.5} 307.5+6.4
Young’s Modulus GPa (Msi) 30316 285+24 439123 41.3+3.5
Fracture Toughness |MPa*m?/2 (ksi*in1/2) 867+0.7 | 9.46+1.2 | 7.89+0.64 | 8.61+1.09
Content:
% Metal % Filler % Matrix % Porosity
Top Bottom Top Bottom Top Bottom Top Bottom
19.14 18.04 51.22 54.81 29.47 27.05 0.17 0.11
Pressure Test:  Tested with flat steel plates. One proof test to 14,000 psi failed after 331 cycies to 14,000 psi.
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Table D-11. Raw data: Cylinder No. LAN 005, 3375-BS.
Sample Flexural Strength Toughness Compressive Strength Modulus
No. (MPa) (MPa*m1/2) (MPa) (GPa)
Top Bottom Top Bottom Top Bottom Top Bottom
1 396.580 371.209 9.227 10.684 21971 2085.6 3158.2 271.8
2 376.068 375.869 9.363 9.643 | 22039 2077.7 279.5 272.5
3 402.462 370.289 7.928 8.092 2150.7 2091.2 281.8 319.6
4 403.836 369.669 8.140 10.268 | 2107.0 2047.0
5 377.866 372.245 10.557 9790 | 21120 2074.0
6 387.796 403.215 7.850 10.982
7 383.565 336.284 10.199 8.758
8 428.618 372.265 9.806
9 418.396 295.993
10 390.712 382.905
Mean 396.590 364.994 9.134 9.745 2154.0 2075.0 282.2 287.9
Min 376.068 295.993 7.850 8.092 2107.0 2047.0 279.5 271.8
Max 428.618 403.215 10.557 10.982 2203.9 2091.2 315.2 319.6
Standard
Deviation 17.132 29.210 1.053 1.033 45.6 171 20.0 27.4
Table D-12. Raw data: Cylinder No. LAN 006, 3375-BX.
Sample Fiexural Strength Toughness Compressive Strength Modulus
No. (MPa) (MPa*m1/2) (MPa) (GPa)
Top Bottom Top Bottom Top Bottom Top Bottom
1 379.790 368.064 7.573 8.086 | 21124 1923.7 269.7 299.0
2 401.079 373.591 8.864 10.305 | 21655 2291.2 313.2 321.1
3 385.009 379.720 9.163 10.197 | 2144.7 2153.6 272.4 289.8
4 400.867 398.794 9.283 9.113 | 2059.0 2276.0
5 389.174 355.956 9.516 10.047 | 2081.0 2307.0
6 381.341 409.141 8.197 10.824 | 2159.0 2233.0
7 359.503 368.082 8.177 9.702
8 416.172 393.483 8.591 7.393
9 349.224 424.023
10 413.202
Mean 384.684 388.406 8.670 9458 | 21200 2200.0 285.1 303.3
Min 349.224 355.956 7.573 7.393 | 2058.0 1923.7 269.7 289.8
Max 416.172 424.023 9.516 10.824 | 21655 2307.0 313.2 321.1
Standard
Deviation 20.824 22.661 0.660 1.183 43.7 141.0 244 16.1
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Table D-13. Test result summary, Cylinder No. LAN 007, 3375-BO (as cast).

Sl Units English Units

Top Bottom Top Bottom

Density gm/cc {Ib/cu.in) 3.390 3.363 0.1224 0.1214
Flexural Strength MPa (ksi) 368+ 24 372122 53.4+3.5 54.0+3.2
Comp. Strength MPa (ksi) 1969 + 93 1992 + 41 285.6+13.5 | 288.9+5.6
Young's Modulus GPa (Msi) 275+ 22 29125 39.9+3.2 422+3.6
Fracture Toughness |MPa*m'/2 (ksi*in'?) | 6.81+0.3 | 6.94+0.7 6.19+0.3 6.32+0.6

Content:
% Metal % Filler % Matrix % Porosity
Top Bottom Top Bottom Top Bottom Top Bottom
19.28 18.94 51.97 51.33 28.28 29.37 0.48 0.36

Pressure Test:

Tested with flat steel plates. One proof test to 12,500 psi failed after 531 cycles to 12,500 psi.

Table D-14. Test result summary, Cylinder No. LAN 008, 3375-CB.

Si Units English Units
Top Bottom Top Bottom
Density gm/cc (Ib/cu.in) 3.374 3.344 0.1218 0.1207
Flexural Strength MPa (ksi) 4097 336167 59.3+1.0 48.7+9.7
Comp. Strength MPa (ksi) 211689 | 1975+167 | 306.9+13 286+ 24
Young's Modulus GPa (Msi) 28419 286+ 12 412+13 | 41517
Fracture Toughness |MPa*m172 (ksi*in1/2) 7.41+04 | 564+1.1 6.50+0.4 | 5.13x1.0
Content:
% Metal % Filler % Matrix % Porosity
Top Bottom Top Bottom Top Bottom Top Bottom
19.26 17.15 50.27 51.34 30.22 31.08 0.24 0.44

Pressure Test:

D-9
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Table D-15. Raw data: Cylinder No. LAN 007, 3375-BO.
Sample Flexural Strength Toughness Compressive Strength Modulus
No. (MPa) {(MPa*m1/) (MPa) {GPa)
Top Bottom Top Bottom Top Bottom Top Bottom
1 366.086 368.379 6.853 6.470 1895.4 2035.2 261.0 261.9
2 356.069 355.100 6.438 7.133 1850.4 1976.4 300.2 309.1
3 342175 362.208 6.485 6.104 2075.5 19452 262.2 300.7
4 357.411 359.206 7.102 8.057 1998.9 1960.5
5 379.857 353.810 6.788 7.823 2022.6 1986.0
6 376.047 395.202 6.722 6.091 2048.8
7 349.731 341.945 6.608 7.029
8 348.046 414.036 7.471 6.793
9 423.861 387.733
10 377.042 382.894
Mean 367.633 372.061 6.809 6.938 19€8.6 1992.0 2745 290.6
Min 342175 341.945 6.438 6.091 1850.4 1945.2 261.0 261.9
Max 423.861 414.036 7.47 8.057 2075.5 2048.9 300.2 309.1
Standard
Deviation 23.719 22271 0.342 0.730 83.0 41.4 22.3 25.2
Table D-16. Raw data: Cylinder No. LAN 008, 3375-CB.
Sample Flexural Strength Toughness Compressive Strength Modulus
No. (MPa) (MPa*m1/2) (MPa) (GPa)
Top Bottom Top Bottom Top Bottom Top Bottom
1 408.599 424119 7.760 5.538 2262.1 2045.2 280.0 276.9
2 394.687 286.227 7.353 5.078 2013.2 17845 2778 280.9
3 415.107 405.557 7.673 8.348 2140.7 2166.2 2942 299.6
4 417.756 357.150 7.534 4.684 2046.1 2114.9
5 413.572 404.380 7.796 6.728 2148.7 1771.0
6 414.033 355.266 6.638 5.615 2086.3 1966.7
7 408.708 334.239 7.106 5.444
8 405.107 252.613 4.423
9 401.689 224.048 5.031
10 316.288 5.459
Mean 408.807 335.989 7.408 5.635 2116.2 1974.8 284.0 285.8
Min 394.687 224.048 6.638 4.423 2013.2 1771.0 277.8 276.9
Max 417.756 424119 7.796 8.348 2262.1 2166.2 294.2 299.6
Standard
Deviation 7.362 67.043 0.418 1.139 88.7 166.8 8.9 121
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Table D-17. Test result summary, Cylinder No. LAN 008, 3375-BR.

Sl Units English Units
Top Bottom Top Bottom
Density gm/ce (Ib/cu.in) 3.359 3.358 0.1213 0.1212
Flexural Strength MPa (ksi) 39425 398+ 15 57.1+3.6 57.7x+22
Comp. Strength MPa (ksi) 2195158 211945 318.4+8.4 | 307.316.5
Young's Modulus GPa (Msi) 294 +5 284 +1 42.6+0.7 41.2+0.1
Fracture Toughness |MPa*m1'/2 (ksi*in'/2) | 8.98+0.9 | 9.00+0.9 8.17+0.8 8.19+0.9
Content:
% Metal % Filler % Matrix % Porosity
Top Bottom Top Bottom Top Bottom Top Bottom
16.39 18.88 56.74 54.48 26.63 26.47 0.24 0.17
Pressure Test:  Tested with flat steel ends. One proof test to 15,000 psi withstood 3,003 cycles to 15,000 psl.
External chip noted.
Table D-18. Test result summary, Cylinder No. LAN 010, 3375-BQ.
S| Units English Units
Top Bottom Top Bottom
Density gm/cc (Ib/cu.in) 3.376 3.357 0.1218 0.1212
Flexural Strength MPa (ksi) 410+ 18 379117 59.5+2.6 55.0x2.5
Comp. Strength MPa (ksi) 2141 £862 2015t46 | 310.5+9.0 | 292.3+6.7
Young's Modulus GPa (Msi) 287 +3 273+0.3 41.6+0.4 39.6+0.0
Fracture Toughness |MPa*m1/2 (ksi*in'/2) 8.39+09 | 856+09 | 7.64+09 | 7.79+09
Content:
% Metal % Filler % Matrix % Porosity
Top Bottom Top Bottom Top Bottom Top Bottom
16.81 16.99 55.84 52.28 26.97 29.86 0.39 0.87
Pressure Test:  Tested with flat steel ends. One proof test to 13,000 psi withstood 3,001 cycles to 13,000 psi. No

leaks or damage noted.
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Table D-19. Raw data: Cylinder No. LAN 009, 3375-BR.

Sample Flexural Strength Toughness Compressive Strength Modulus
No. (MPa) {(MPa*m'/2) (MPa) {GPa)
Top Bottom Top Bottom Top Bottom Top Bottom
1 389.636 388.687 7.842 9.455 2240.5 2162.2 293.8 284.5
2 393.550 382.626 8.574 9.373 | 21625 2142.6 289.2 284.0
3 386.094 415.975 8.220 8.959 | 2286.8 2156.7 298.4 283.0
4 419.369 394.023 8.964 8.464 | 2129.0 2046.4
5 343.229 381.027 10.046 9.171 2164.6 2086.8
6 420.319 416.469 9.416 9.608 2187.4 2119.6
7 384.480 391.436 8.495 10.222
8 413.613 413,597 8.779 8.487
9 10.521 7.240
10
Mean 393.786 397.980 8.984 8.998 | 21951 2119.1 293.8 283.8
Min 343.229 381.027 7.842 7.240 2129.0 2046.4 289.2 283.0
Max 420.319 416.469 10.521 10.222 2286.8 2162.2 298.4 284.5
Standard
Deviation 25.272 15.012 0.867 0.858 58.1 451 4.6 0.8
Table D-20. Raw data: Cylinder No. LAN 010, 3375-BQ.
Sample Flexural Strength Toughness Compressive Strength Modulus
No. (MPa) (MPa*m1/2) (MPa) (GPa)
Top Bottom Top Bottom Top Bottom Top Bottom
1 414.800 348.032 7.222 7.785 2176.9 1986.1 289.6 273.3
2 385.420 383.809 9.290 9.660 | 2165.5 2061.4 283.6 272.7
3 433.516 371.255 8.865 9470 | 21934 2000.5 287.2 273.0
4 427.064 400.044 7.836 8.303 2129.0 2003.8
5 400.027 373.191 7.669 8.532 20221 2077.5
6 409.030 388.350 9.442 7172 | 2157.3 1958.8
7 422.541 372.986 8.085 8.066
8 385.774 396.628 7.707 9.468
9 9.400
10
Mean 409.771 379.287 8.391 8.557 | 2140.7 2014.7 286.8 273.0
Min 385.420 348.032 7.222 7172 | 20221 1958.8 283.6 272.7
Max 433.516 400.044 9.442 9.660 | 21934 2077.5 289.6 273.3
Standard
Deviation 18.188 16.701 0.860 0.902 61.9 45.6 3.0 0.3
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Table D-21. Test result summary, Cylinder No. LAN 011, 3375-BW.

Si Units English Units
Top Bottom Top Bottom
Density gm/cc (Ib/cu.in) 3.370 3.368 0.1217 0.1216
Flexural Strength MPa (ksi) 381+£35 383+ 17 55.3+5.1 555+25
Comp. Strength MPa (ksi) 2154173 2068+26 | 312.4+10.6 | 299.9+3.8
Young's Modulus GPa (Msi) 2806 270 1 40.6+0.9 39.2x0.1
Fracture Toughness |MPa*m'/2 (ksi*in'/2) | 8.55+05 | 9.42+0.7 7.78+0.5 8.57+0.6
Content:
% Metal % Filler % Matrix % Porosity
Top Bottom Top Bottom Top Bottom Top Bottom
17.55 20.06 50.61 48.66 31.21 31.03 0.62 0.25

Pressure Test:

Table D-22. Test result summary, Cylinder No. LAN 012, 3375-AZ (as cast).

Tested with flat steel ends. One proof test to 10,000 psi. Cylinder imploded at 19,000 psi.

Sl Units English Units
Top Bottom Top Bottom
Density gm/cc (Ib/cu.in) 3.358 3.349 0.1212 0.1209
Flexural Strength MPa (ksi) 398+ 19 384 +40 577128 55.7+5.8
Comp. Strength MPa (ksi) 2076 £ 69 2001+70 [301.1+£10.0{290.2+10.2
Young's Modulus GPa (Msi) 301+19 270+6 43.7+2.8 39.2+0.9
Fracture Toughness | MPa*m1/2 (ksi*in/2) 791+06 | 68014 | 7.19+0.5 6.2+1.3
Content;
% Metal % Filler % Matrix % Porosity
Top Bottom Top Bottom Top Bottom Top Bottom
13.85 12.15 46.78 46.67 38.61 40.33 0.76 0.86

Pressure Test:

leaks or damage noted.
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Table D-23. Raw data: Cylinder No. LAN 011, 3375-BW.

Sample Flexural Strength Toughness Compressive Strength Modulus
No. (MPa) (MPa*m1/2) (MPa) (GPa)
Top Bottom Top Bottom Top Bottom Top Bottom
1 401.758 400.445 9.211 9.739 2170.8 2098.6 276.2 2715
2 355.475 385.677 8.759 8.667 2052.9 2037.6 276.6 269.9
3 368.750 376.955 8.539 9.089 2088.4 2065.2 287.5 269.0
4 353.966 389.544 8.259 8.643 2155.1 2036.6
5 441.002 384.081 8.642 9.629 2244 4 2075.7
6 332.005 373.079 7.455 9.097 2213.5 2091.0
7 400.924 402.871 8.486 10.489
8 393.418 349.765 9.056 10.034
9
10
Mean 380.912 382.802 8.551 9.423 2154.2 2067.5 280.1 2701
Min 332.005 349.765 7.455 8.643 2052.9 2036.6 276.2 269.0
Max 441.002 402.871 9.211 10.489 2244 .4 2098.6 287.5 2715
Standard
Deviation 34.878 16.859 0.539 0.660 72.8 26.2 6.4 1.3
Table D-24. Raw data: Cylinder No. LAN 012, 3375-AZ.
Sample Flexural Strength Toughness Compressive Strength Modulus
No. (MPa) {(MPa*m1/?) (MPa) (GPa)
Top Bottom Top Bottom Top Bottom Top Bottom
1 430.157 374.929 8.387 4.414 2016.1 1974.5 321.9 269.3
2 392.959 401.932 7.661 6.099 2164.9 19841 284.7 276.2
3 401.358 409.332 6.929 6.084 2004.9 2101.7 296.6 264.4
4 382.172 423.791 8.498 8.899 | 2126.0 2032.0
5 395.797 380.708 8.315 8.498 2066.0 1914.0
6 413.847 394.273 7.592 6.884
7 372.458 372.469 7.952 7.768
8 382.236 276.693 5.175
9 422.572 411.349 7.048
10 409.767 371.001 7.091
" 376.937 402.995
Mean 398.206 383.588 7.905 6.796 2076.0 2001.0 301.1 270.0
Min 372.458 276.693 6.929 4.414 2004.9 1914.0 284.7 269.3
Max 430.157 423.791 8.498 8.899 2164.9 2101.7 321.9 276.2
Standard
Deviation 19.141 10.319 0.558 1.403 69.2 70.2 19.0 59
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